Main Article Content

Abstract

Abstract
This study was aimed to simulate a novel configuration of gasification stove with the natural draft principles (natural draft gasification or called as NDG stove) based on chimney effect and thermochemical equilibrium modeling. The thermochemical equilbrium model used general stoichiometric gasification,
methanation and water-gas shift equations and their equilibrium constant equations as well as the general energy balance equation. Those equations were coupled with the chimney effect equation and then solved to obtain the reaction coefficients, equilibrium constants, reaction temperature as well as the mass flow rate of air. Simulation was performed by using VBA programming codes in Excel. Subsequently, a stove was built in order to obtain the charcoal consumption rate data which is required to validate the model. The test results showed that the combustion rate was constant i.e. 8.8 g/min and the quality of the flame of the stove was visually good. The calculation result showed that the model could succesfully predict the product gases including CO, CH4, CO2, O2, N2 and other gases. The simulation showed that by using lower stove
height (0.5 and 0.4 m) the combustible gases (CO, H2 and CH4) compositions were increased in such a way that with same combustion rate the potential heat of gas increased from 2.33 kW at stove height of 0.6 m to 2.63 kW at 0.4 m.


Abstrak
Penelitian ini bertujuan untuk mensimulasi tungku gasifikasi dengan konfigurasi baru yang menggunakan prinsip natural draft (tungku natural draft gasification atau disebut sebagai tungku NDG) didasarkan pada
pemodelan efek cerobong dan keseimbangan termokimia. Model keseimbangan termokimia menerapkan persamaan stoikiometri untuk gasifikasi, methanation dan water-gas shift, persamaan-persamaan konstanta keseimbangannya serta persamaan neraca energi umum. Persamaan-persamaan tersebut digabungkan dengan persamaan efek cerbong dan dipecahkan untuk memperoleh koefisien reaksi, konstanta keseimbangan, suhu reaksi dan laju aliran massa udara. Selanjutnya tungku tersebut dikonstruksi dan diuji untuk memperoleh data laju konsumsi arang yang dibutuhkan untuk validasi model. Hasil pengujian
kinerja menunjukkan bahwa penggunaan tungku untuk arang kayu memiliki laju pembakaran yang konstan 8.8 g/menit dan kualitas nyala api tungku ini cukup baik secara visual. Hasil perhitungan menunjukkan
bahwa model yang diterapkan telah dapat memprediksi konsentrasi gas-gas produk yang mencakup CO, CH4, CO2, O2 serta gas N2 dan gas-gas lainnya. Hasil simulasi menunjukkan bahwa tinggi tungku yang lebih rendah (0.5 dan 0.4 m) memberikan konsentrasi gas-gas mampu bakar yang lebih tinggi sedemikian hingga dengan laju konsumsi arang yang sama daya gas potensialnya meningkat dari 2.33 kW pada tinggi
0.6 m menjadi 2.63 kW pada tinggi 0.4 m.

Keywords

NDG stove charcoal gasification modeling

Article Details

Author Biographies

Leopold Oscar Nelwan, Institut Pertanian Bogor

Departemen Teknik Mesin dan Biosistem

Dyah Wulandani, Institut Pertanian Bogor

Departemen Teknik Mesin dan Biosistem

Edy Hartulistiyoso, Institut Pertanian Bogor

Departemen Teknik Mesin dan Biosistem

Sri Endah Agustina, Institut Pertanian Bogor

Departemen Teknik Mesin dan Biosistem

Dziyad Dzulfansyah, Institut Pertanian Bogor

Program Studi Teknik Mesin Pertanian dan Pangan

Erlanda Augupta Pane, Institut Pertanian Bogor

Program Studi Teknik Mesin Pertanian dan Pangan

References

  1. Abasiryu T., A. Ayuba and A.E. Zira. 2016. Performance evaluation of some locally fabricated cookstoves in Mubi, Adamawa State, Nigeria.
  2. Nigerian Journal of Technology (NIJOTECH) Vol. 35, No. 1, (2016): 48 – 53. http://dx.doi.org/10.4314/njt.v35i1.8
  3. Agenbroad, J., M. DeFoort, A. Kirkpatrick, C. Kreutzer. 2011a. A simplified model for understanding natural convection driven biomass cooking
  4. stoves—Part 1: Setup and baseline validation. Energy for Sustainable Development 15 (2011)160–168. doi:10.1016/j.esd.2011.04.004
  5. Agenbroad, J., M. DeFoort, A. Kirkpatrick, C. Kreutzer. 2011b. A simplified model for understanding natural convection driven biomass cooking
  6. stoves—Part 2: With cook piece operation and the dimensionless form. Energy for Sustainable Development 15 (2011) 169–175.doi:10.1016/j.
  7. esd.2011.04.002
  8. Field, J. 2012. Gasifying Cookstoves Database. Colorado State University.
  9. Gautam, G. 2010. Parametric Study of a Commercial-Scale Biomass Downdraft Gasifier: Experiments andEquilibrium Modeling. Thesis.
  10. Auburn University.
  11. Jarungthammachote, S., A. Dutta. 2006. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy. 32(9): 1660 – 1669. doi: 10.1016/j. energy.2007.01.010
  12. Jetter, J., Y. Zhao, K.R. Smith, B. Khan, T. Yelverton, P. DeCarlo, and M. D. Hays. 2012. Pollutant Emissions and Energy Efficiency under Controlled
  13. Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards. Environmental
  14. Science & Technology. 2012;46(19):10827-34.
  15. MacCarty, N., and K.M. Bryden. 2015. Modeling of household biomass cookstoves: A review. Energy for Sustainable Development 26 (2015) 1–13. http://dx.doi.org/10.1016/j.esd.2015.02.001
  16. Nelwan, L.O., S.E. Agustina, dan E. Hartulistiyoso. 2013. Pengembangan Disain Tungku Masak Gasifikasi Biomassa Berbasis Pemodelan Pindah
  17. Panas Dan Ekuilibrium. Laporan Penelitian Unggulan Penelitian Perguruan Tinggi. LPPM.IPB.
  18. Pane, E.A., L.O. Nelwan dan D. Wulandani. 2014. Pengembangan Tungku Gasifikasi Arang Biomassa Tipe Natural Draft Gasification Berdasarkan Analisis Computational Fluid Dynamics (CFD). Jurnal Keteknikan Pertanian 28(2): 117-124
  19. Syed, S., I. Janajreh, C. Ghenai. 2012. Thermodynamics equilibrium analysis within the entrained flow gasifier environment.International
  20. Journal of Thermal & Environmental Engineering.4(1): 47 – 54.
  21. Tryner, J., B.D. Willson, A.J. Marchese. 2014. The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier
  22. biomass cookstoves. Energy for Sustainable Development 23 (2014) 99–109. http://dx.doi.org/10.1016/j.esd.2014.07.009
  23. Zhang J., K.R. Smith, R. Uma, Y. Ma, V.V.N. Kishore, K. Lata, M.A.K. Khalil, R.A. Rasmussen, S.T. Thorneloe. 2011. Carbon monoxide from cookstoves in developing countries: 1. Emission factors. Chemosphere: Global Change Science 1 (1999) 353-366. http://ehsdiv.sph.berkeley.edu/
  24. krsmith/publications/99_zhang_2.pdf.