Populasi Mikroba Rumen, Fermentabilitas, dan Kecernaan Suplementasi Daun Kelor dalam Ransum Sapi Perah secara In Vitro

Microbial Rumen Population, Fermentability, and Digestibility of Moringa Leaf Supplementation in Dairy Cow Ration using In Vitro

  • R Zahera Departemen Ilmu Nutrisi dan Teknologi Pakan, Fakultas Peternakan, Institut Pertanian Bogor
  • J Purwanti Departemen Ilmu Nutrisi dan Teknologi Pakan, Fakultas Peternakan, Institut Pertanian Bogor
  • D Evvyernie Departemen Ilmu Nutrisi dan Teknologi Pakan, Fakultas Peternakan, Institut Pertanian Bogor
Keywords: digestibility, fermentability, in vitro, moringa leaf, dairy cow


This study aimed to evaluate the microbial rumen population, fermentability, and digestibility of Moringa leaf supplementation in dairy cow ration using in vitro and to determine the optimal level of supplementation. The experiment consist of two steps with the first step was microbiology measurement used a Randomized Block Design with 5 treatments level of Moringa leaf extract (P0= control; P1= 5%, P2 = 10%, P3 =15%, P4 =20%) and the second step was in vitro fermentability and digestibility measurement used Randomized Block Design with 7 treatments level of Moringa leaf in dairy cow ration (R0 = control, R1 = R0 + 2.5% Moringa leaf, R2= R0 +5% Moringa leaf, R3 = R0 + 7.5% Moringa leaf, R4= R0+10% Moringa leaf, R5=R0+12.5% Moringa leaf, R6=R0+15% Moringa leaf) which grouped by rumen fluids. Data analysis used analysis of variance and continued with Duncan’s Multiple Range Test. The measured variable were microbial rumen population (bacteria and protozoa), fermentability (N-NH3, VFA), microbial protein synthesis, dry matter digestibility (DMD), and organic matter digestibility (DMO). The results showed Moringa leaf extract significantly decreased bacterial population (p<0.05), but there was no effect on the protozoa population. Moringa leaf supplementation did not affect N-NH3, DMD, and DMO, but significantly influenced VFA concentration and microbial protein synthesis (p<0.01). The higher Moringa leaf supplementation showed decreasing total VFA concentration, but was still within the normal range for rumen fermentation (102.29-126.69 mM). Moringa leaf supplementation showed a quadratic effect on microbial protein synthesis with an optimal supplementation level of 5%, but decreasing at a level of 7.5% still within in normal range. It can be concluded Moringa leaf can be supplemented up to 7.5% in dairy cow ration.

Key words:   digestibility, fermentability, in vitro, moringa leaf, dairy cow


Download data is not yet available.


Anjani FM, Evvyernie D & Permana IG. 2019. In vitro evaluation of Noni juice extract waste (Morinda citrifolia L.) in lactating dairy goat diet. AIP Conference Proceeding. doi:10.1063/1.5115727.

Cherdthong A & Wanapat M. 2013. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livestock Science. 153(1–3):94–100. doi:10.1016/j.livsci.2013.02.008.

Cohen-Zinder M, Weinberg Z, Leibovich H, Chen Y, Rosen M, Sagi G, Orlov A, Agmon R, Yishay M & Sahbtay A. 2017. Ensiled Moringa oleifera: an antioxidant-rich feed that improves dairy cattle performance. Journal of Agriculture Science. 155(7):1–13.

Daglia M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology. 23(2):174–181 doi:10.1016/j.copbio.2011.08.007.

Despal D, Irmadani D, Permana IG, Zahera R & Nuraina N. 2022. Effect of different unsaturated fatty acids sources on in vitro fermentability and digestibility of ration in dairy cattle. Online Journal of Animal Feed Research. 12(3):154–159 doi:10.51227/OJAFR.2022.20.

Dung D V, Shang W & Yao W. 2014. Effect of crude protein tarafs in concentrate and concentrate tarafs in diet on in vitro fermentation. Asian-Australasian Journal of Animal Science. 27(6):797–805.doi:10.5713/ajas.2013.13560.

Fiordalisi SAL, Honorato LA, Loiko MR, Avancini CAM, Veleirinho MBR, Filho LCPM & Kuhnen S. 2016. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants. Journal of Dairy Science. 99(3):2308–2318.doi:10.3168/jds.2015-9777.

Galfi A, Radinovic M, Davidov I, Erdeljan M & Kovacevic Z. 2017. Detection of subclinical mastitis in dairy cows using California and Draminski mastitis test. Biotechnology Animal Husbandary. 33(4):465–473.doi:10.2298/bah1704465g.

Ibrahim A & Kuncoro H. 2012. Identifikasi metabolit sekunder dan aktivitas antibakteri ekstrak daun sungkai (Peronema canescens Jack.) terhadap beberapa bakteri patogen. Journal of Tropical Pharmacy and Chemistry. 2(1):8–18 doi:10.25026/jtpc.v2i1.43.

Kekana TW, Marume U, Muya CM & Nherera-Chokuda F V. 2019. Lactation performance and blood metabolites in lactating dairy cows micro-supplemented with Moringa oleifera leaf meal. South African Journal of Animal Science. 49(4):709–716 doi:10.4314/sajas.v49i4.12.

Khan MZ, Ma Y, Xiao J, Chen T, Ma J, Liu S, Wang Y, Khan A, Alugongo GM & Cao Z. 2022. Role of selenium and vitamins E and B9 in the alleviation of bovine mastitis during the periparturient period. Antioxidants. 11(4):1–15 doi:10.3390/antiox11040657.

Lopes TS, Fontoura PS, Oliveira A, Rizzo FA, Silveira S & Streck AF. 2020. Use of plant extracts and essential oils in the control of bovine mastitis. Research in veterinary science. 131(10):186–193.doi:10.1016/j.rvsc.2020.04.025.

Lowry OH, Rosebrough NJ, Farr AL & Randall RJ. 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry. 193(1):265–275 doi:10.1016/s0021-9258(19)52451-6.

McDonald P, Edwards R, Greenhalgh J, Morgan C, Sinclair L, Wilkinson R. 2010. Animal Nutrition. Seventh Ed. England: Preason Education Limited.

Newbold CJ & Ramos-Morales E. 2020. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal. 14(S1):S78–S86 doi:10.1017/S1751731119003252.

NRC. 2001. Nutrient Requirement of Dairy Cattle. 7th Editio. Washington, DC (US): National Academy Press.

Nweze NO & Nwafor FI. 2014. Phytochemical, proximate and mineral composition of leaf extracts of Moringa oleifera Lam. from Nsukka, South-Eastern Nigeria. OSR Journal of Pharmacy and Biological Sciences. 9(1): 99–103.

Ogimoto K & Imai S. 1981. Atlas of Rumen Microbiology. Tokyo (JP): Societe Press.

Putri EM, Zain M, Warly L & Hermon H. 2021. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Veterinary World. 14(3):640–648 doi:10.14202/VETWORLD.2021.640-648.

Qin WZ, Li CY, Kim JK, Ju JG & Song MK. 2012. Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Australasian Journal of Animal Science. 25(10):1381–1388 doi:10.5713/ajas.2012.12240.

Riestanti LU, Retnani Y & Despal D. 2020. Fermentability and digestibility responses of prill fat supplementation in dairy ration. IOP Conference:Earth and Environmental Science (EES). 411(1) doi:10.1088/1755-1315/411/1/012037.

Rosmalia A, Permana IG & Despal D. 2022. Synchronization of rumen degradable protein with non-fiber carbohydrate on microbial protein synthesis and dairy ration digestibility. Veterinary World. 15(2):252–261 doi:10.14202/vetworld.2022.252-261.

Rosmalia A, Permana IG, Despal & Zahera R. 2021. Estimation rumen degradable protein of local feeds in dairy cattle using in sacco method. IOP Conference Series: Earth and Environmental Science (EES). Vol. 883. IOP Publishing Ltd.

Su B & Chen X. 2020. Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Frontiers in Veterinary Science. 7(2):1–13.doi:10.3389/fvets.2020.00053.

Sucak MG, Serbester U & Görgülü M. 2017. Effects of dietary starch and crude protein tarafs on milk production and composition of dairy cows fed high concentrate diet. Turkish Journal of Agriculture and Food Science Technology. 5(6):563–567.doi:10.24925/turjaf.v5i6.563-567.718.

Sutardi T. 1979. Ketahanan protein bahan makanan terhadap degradasi mikroba rumen dan manfaatnya bagi peningkatan produktivitas ternak. Seminar Penelitian dan Penunjang Peternakan. Bogor (ID): LPP Deptan. hlm. 91–103.

Tilley JMA & Terry RA. 1963. A two stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18(2):104–111.doi:10.1111/j.1365-2494.1963.tb00335.x.

Wina E, Muetzel S & Becker K. 2005. The impact of saponins or saponin-containing plant materials on ruminant production - A review. Journal of Agriculture and Food Chemistry. 53(21):8093–8105 doi:10.1021/jf048053d.

Zadeh JB, Moradi Z & Moradi N. 2013. Synchronization of energy and protein on supply synthesis microbial protein. International Journal of Advanced. Biological and Biomedical Research. 1(6):594–600.

Zahera R, Anggraeni D, Rahman ZA & Evvyernie D. 2020. Pengaruh kandungan protein ransum yang berbeda terhadap kecernaan dan fermentabilitas rumen sapi perah secara in vitro. Journal Ilmu Nutrisi dan Teknology Pakan. 18(1):1–6 doi:10.29244/jintp.v18i1.31547.

How to Cite
ZaheraR., PurwantiJ., & EvvyernieD. (2022). Populasi Mikroba Rumen, Fermentabilitas, dan Kecernaan Suplementasi Daun Kelor dalam Ransum Sapi Perah secara In Vitro: Microbial Rumen Population, Fermentability, and Digestibility of Moringa Leaf Supplementation in Dairy Cow Ration using In Vitro. Jurnal Ilmu Nutrisi Dan Teknologi Pakan, 20(3), 117-122. https://doi.org/10.29244/jintp.20.3.117-122