Potensi Bakteri Endofit Asal Lantana camara, Kelapa Sawit, dan Mangrove untuk Mengendalikan Meloidogyne spp. pada Tanaman Terung

  • Siti Zulaiha IPB
  • Abdul Munif
  • Abdjad Asih Nawangsih
Keywords: identifikasi, mortalitas, senyawa organik volatil

Abstract

Potential of the Endophytic Bacteria from Lantana camara, Palm Oil, and Mangroves to control Meloidogyne spp. on Eggplant

Root knot nematodes Meloidogyne spp. is one of the important pathogens in eggplant. Root gall is very detrimental disease that can cause production reduces. This study aims to obtain endophytic bacteria from Lantana camara and evaluate them together with endophytic bacteria from oil palm roots and mangroves which have the potential to control Meloidogyne spp. and determine its effect on eggplant growth, as well as identify potential endophytic bacteria as biological control agents. The biological control agents’ potency was referred to screening results such as mortality test, volatile organic compound (SOV) and suppress test on root gall was evaluated by measuring percentage of gall reduction, root damage scale and egg package. The results showed that all endophytic bacteria isolates had the potential to mortality of Meloidogyne spp. and produce SOV as well as can suppressing the percentage of gall reduction in eggplant root and have effect to the weight and height of the plant. Isolates LCA5 and LCA13 had the potential to mortality of Meloidogyne spp. above 90% during 24 hours, and the SOV test causes mortality above 60% for 24 hours. Endophytic bacteria that have potential as biological control were identified as Dyella marensis, Stenotrophomonas rhizophilla, and Providencia vermicola.

Downloads

Download data is not yet available.

References

Aish AA, Mohammad MS, Sahar, AY, Samiya IM. 2019. Providencia vermicola mediated growth alteration and inhibited gall formation on tomato plants infected with the root knot nematode Meloidogyne javanica. Plant Archieves. 19(2):3865–3873.

Alvarez C, Aballay E. 2016. Rhizobacteria with nematicide aptitude: enzymes and compounds associated. World Journal of Microbiology and Biotechnology. 23(12):32–203. DOI: https://doi.org/10.1007/s11274-016-2165-6.

Anggita SA. 2020. Potensi bakteri endofit sebagai agens biokontrol penyakit busuk pangkal batang (Ganoderma boninense) pada tanaman kelapa sawit [tesis]. Bogor (ID): IPB University.

Beutin L. 1991. The different hemolysins of Escherichia coli. Medical Microbiology and

Immunology. 180(4):167–182. DOI: https://doi.org/10.1007/BF00215246.

[BPS] Badan Pusat Statistik. 2021. Statistik Pertanian 2021: Produksi tanaman terung, luas panen terung, dan produktivitas terung. Jakarta (ID): Badan Pusat Statistik. https://www.pertanian.go.id/home/?show=page&act=view&id=61 [diakses 20 Maret 2022].

Chen L, Jiang H, Cheng Q, Cheng J, Wu G, Kumar A, Sun M, Liu Z. 2015. Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Scientific Reports. 14(395):2045–2322. DOI: https://doi.org/10.1038/srep14395.

Frank JA, Claudia I, Reich, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA Genes. Applied and Environmental Microbiology. 74(8):2461–2470. DOI: https://doi.org/10.1128/AEM.02272-07.

Groover W, Held D, Lawrence K, Carson K. 2020. Plant growth-promoting rhizobacteria: a novel management strategy for Meloidogyne incognita on turfgrass. Pest Management Science. 76(9):3127–3138. DOI: https://doi.org/10.1002/ps.5867.

Heath MC. 2000. Hypersensitive response-related death. Plant Molecular Biology.

(3):321–334. DOI: https://doi.org/10.1007/978-94-010-0934-8_6.

Herrera H, Sanhueza T, Novotná A, Charles TC, Arriagada C. 2020. Isolation and identification of endophytic bacteria from mycorrhizal tissues of terrestrial orchids from Southern Chile. Diversity. 12(2):55. DOI: https://doi.org/10.3390/d12020055.

Hu HJ, Chen YL, Wang YF, Tang YY, Chen SL, Yan SZ. 2017. Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Disease. 101(3):448–455. DOI: https://doi.org/10.1094/PDIS-06-16-0871-RE.

Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F. 2015. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environment Science and Pollution Research. 23(1):220–233. DOI: https://doi.org/10.1007/s11356-015-5354-1.

Janardhan BS, Vijayan K. 2012. Types of endophytic bacteria associated with traditional medicinal plant Lantana camara Linn. Pharmacognosy Journal. 4(32):20–23. DOI: https://doi.org/10.5530/pj.2012.32.4.

Kalaiarasan P, Lakshmanan P, Rajendran G, Samiyappan R. 2006. Chitin and chitinolytic biocontrol agents for the management of root knot nematode, Meloidogyne arenaria in groundnut (Arachis hypogaea L.) cv Co3. Indian Journal Nematology. 36(2):181–186.

Kong WJ, Yan YC, Li XY, Liu ZY. 2018. Draft genome sequence of Bacillus velezensis peba20 a strain with a plant growth-promoting effect and biocontrol potential genome announcements. American Society for Microbiology. (6):21. DOI: 10.1128/genomeA.00286-18

Khotimah N, Wijaya IN, Sritamin M. 2020. Perkembangan populasi nematoda puru akar (Meloidogyne spp.) dan tingkat kerusakan pada beberapa tanaman familia Solanaceae. Jurnal Agroekoteknologi Tropika. 9(1):23–31. ISSN 2301-6515.

Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. 2015. The hyper accumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improves its phytoextraction capacity in multi-metal contaminated soil. Journal Environment Management. 1(156):62–69. DOI: https://doi.org/10.1016/j.jenvman.2015.03.024.

Mastretta C, Taghavi S, Lelie VD, Mengoni A, Galardi F, Gonnelli C, Barac

T, Bouler J, Weyens N, Vangronsveld J. 2009. Endophytic bacteria from

seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation. 11(3):251–267.

Munif A, Wibowo AR, Herliyana EN. 2015. Bakteri endofit dari tanaman kehutanan sebagai pemacu pertumbuhan tanaman tomat dan agens pengendali Meloidogyne spp. Jurnal Fitopatologi Indonesia. 11(6):179–186. DOI: https://doi.org/10.14692/jfi.11.6.179.

Oteino N, Lally RD, Kiwanuka S, Llyord A, Ryan D, Germaine KJ, Dowling DN. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology. 6(9):1–9. DOI: https://doi.org/10.3389/fmicb.2015.00745.

Patil RS, Ghormade V, Deshpande MV. 2000. Chitinolytic enzymes: an

exploration. Enzyme and Microbial Technology. 26(7):473–483. DOI:

https://doi.org/10.1016/S0141-0229(00)00134-4.

Sambrook JF, Russel DW. 2001. Molecular cloning: In vitro amplification of DNA by the polymerase chain reaction. Di dalam Green MR, Sambrook J, editor. A Laboratory Manual. New York (US): Cold Spring Harbor Laboratory Press. hlm:748–752.

Sikora RA, Fernandez. 2005. Plant parasitic nematodes in subtropical and tropical agriculture: Nematode parasites of vegetables. Di dalam: Luc M, Sikora RA, Bridge J, editor. Library of Congress Cataloging-in-Publication Data. Wallingford (UK): CABI publishing. hlm:319–393.

Sikora RA, Schafer K, Dababat AA. 2007. Modes of action associated with microbially induced in planta suppression of plant parasitic nematodes. Australasian Plant Pathology. 36:124–134. DOI: https://doi.org/10.1071/AP07008.

Tapia-Garcia EY, Hernández-Trejo V, Guevara-Luna J, Rojas FU, Arroyo-Herrera I, Meza-Radilla G, Vásquez-Murrieta MS, Estrada-de los Santos P. 2020. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiological Research. 239:126522. DOI: https://doi.org/10.1016/j.micres.2020.126522.

Taylor AI, Sasser JN. 1978. Biology identification and control of root knot nematodes (Meloidogyne spp.): Phisiological variation within Meloidogyne populations. Di dalam: Sasser JN, editor. International Meloidogyne Project. Releigh (NC): Department of Plant Pathology. hlm 29–30.

Ulrich K, Kube M, Becker R, Volker S, Ulrich A. 2021. Genomic analysis of the endophytic Stenotrophomonas strain 169 reveals features related to plant-growth promotion and stress tolerance. Frontiers in Microbiology. 12:687463. DOI: https://doi.org/10.3389/fmicb.2021.687463.

Xu YY, Lu H, Wang X, Zhang KQ, Li GH. 2015. Effect of volatile organic compounds from bacteria on nematodes. Chemistry and Biodiversity. 12(9):1415–1421. DOI: https://doi.org/10.1002/cbdv.201400342.

Yadav AN. 2018. Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Scientific Microbiology. 1(44):2581–3226.

Yin N, Liu R, Zhao JL, Khan RAA, Li Y, Ling J, Liu W, Yang YH, Xie BY, Mao ZC. 2021. Volatile organic compounds of Bacillus cereus strain Bc-cm10 exhibit fumigation activity against Meloidogyne incognita. Plant Disease. 105(4):904–911. DOI: 10.1094/PDIS-04-20-0783-RE

Yus IDM, Rahardjo BT, Himawan T. 2014. Pengaruh aplikasi bakteri Pseudomonas fluorescens dan Bacillus subtilis terhadap mortalitas nematoda puru akar (Meloidogyne javanica) di laboratorium. Jurnal Hama Penyakit Tumbuhan. 2(3):9–17.

Published
2022-12-22
How to Cite
Siti Zulaiha, Abdul Munif, & Abdjad Asih Nawangsih. (2022). Potensi Bakteri Endofit Asal Lantana camara, Kelapa Sawit, dan Mangrove untuk Mengendalikan Meloidogyne spp. pada Tanaman Terung. Jurnal Fitopatologi Indonesia, 18(5), 213-221. https://doi.org/10.14692/jfi.18.5.213-221
Section
Articles