Determination of Cell Wall Protein from Selected Feedstuffs and its Relationship with Ruminal Protein Digestibility in Vitro

  • Anuraga Jayanegara Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • S. P. Dewi Undergraduate Program of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • N. Laylli Undergraduate Program of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • E. B. Laconi Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • Nahrowi Nahrowi Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • M. Ridla Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
Keywords: cell wall protein, NDICP, ADICP, rumen, digestibility


This study was aimed to analyze neutral detergent insoluble crude protein (NDICP) and acid detergent insoluble crude protein (ADICP) contents of various commonly used forage and concentrate feedstuffs in Indonesia. A number of forages and concentrates, i.e. gliricidia, trichantera, indigofera, calliandra, papaya leaves, cassava leaves, leucaena, rapeseed meal, corn gluten feed, soybean meal, copra meal, palm kernel meal, fish and bone meal and wheat bran were subjected to proximate analysis, cell wall nitrogen determination and in vitro rumen fermentation evaluation. Chemical composition analysis was done in duplicate. The in vitro incubation was conducted in 14 treatments and 3 replicates by following a randomized complete block design. Variables measured after the incubation were total volatile fatty acid (VFA), ammonia, dry matter digestibility (DMD), organic matter digestibility (OMD) and crude protein digestibility (CPD). Results revealed that among the forages, cassava leaf had the highest proportion of NDICP while corn gluten feed was the highest among the concentrates. Different from that of NDICP, the highest proportion of ADICP was obtained in papaya leaf and copra meal for the forages and concentrates, respectively. Higher proportion of NDICP tended to decrease CPD (P<0.1). Although higher ADICP apparently tended to decrease CPD as well, the relationship was insignificant due to the higher variation of the dependent variable. It was concluded that cell wall protein proportion in feed may be used as an indicator to determine the quality of protein and its utilization in the rumen.


Download data is not yet available.


Abdullah, L. 2010. Herbage production and quality of shrub indigofera treated by different concentration of foliar fertilizer. Med. Pet. 33:169-175.

AOAC. 2005. Official Methods of Analysis. 18th Edition. AOAC International, Arlington, VA, USA.

Bach, A., S. Calsamiglia, & M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88 (E. Suppl.):E9-E21.

Bahrami-Yekdangi, H., M. Khorvash, G. R. Ghorbani, M. Alikhani, R. Jahanian, & E. Kamalian. 2014. Effects of decreasing metabolizable protein and rumen-undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation. J. Dairy Sci. 97:3707-3714.

Baldwin, R. L., & S. C. Denham. 1979. Quantitative and dynamic aspects of nitrogen metabolism in the rumen: a modeling analysis. J. Anim. Sci. 49:1631-1639.

Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590.

Cudjoe, N., & V. Mlambo. 2014. Buffer nitrogen solubility, in vitro ruminal partitioning of nitrogen and in vitro ruminal biological activity of tannins in leaves of four fodder tree species. J. Anim. Physiol. Anim. Nutr. 98:722-730.

Das, L. K., S. S. Kundu, D. Kumar, & C. Datt. 2014. The evaluation of metabolizable protein content of some indigenous feedstuffs used in ruminant nutrition. Vet. World 7:257-261.

Das, L. K., S. S. Kundu, D. Kumar, & C. Datt. 2015. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation. Vet. World 8:197-202.

Edmunds, B., K. H. Sudekum, H. Spiekers, & F. J. Schwarz. 2012. Estimating ruminal crude protein degradation using in situ and in vitro techniques. Anim. Feed Sci. Technol. 175:95-105.

General Laboratory Procedures. 1966. Department of Dairy Science, University of Wisconsin, Madison, USA.

Higgs, R. J., L. E. Chase, & M. E. Van Amburgh. 2012. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows. J. Dairy Sci. 95:2004-2014.

Hue, K. T., D. T. T. Van, E. Sporndly, I. Ledin, & E. Wredle. 2012. Effect of adaptation strategies when feeding fresh cassava foliage on intake and physiological responses of lambs. Trop. Anim. Health Prod. 44:267-276.

Jayanegara, A., H. P. S. Makkar, & K. Becker. 2009. Emisi metana dan fermentasi rumen in vitro ransum hay yang mengandung tanin murni pada konsentrasi rendah. Med. Pet. 32:184-194.

Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer, & F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231-243.

Jayanegara, A., S. Marquardt, E. Wina, M. Kreuzer, & F. Leiber. 2013. In vitro indications for favourable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Brit. J. Nutr. 109:615-622.

Jayanegara, A., E. Wina, & J. Takahashi. 2014. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian Australas. J. Anim. Sci. 27:1426-1435.

Jayanegara, A., G. Goel, H. P. S. Makkar, & K. Becker. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209:60-68.

Jelantik, I. G. N., M. R. Weisbjerg, & J. Madsen. 2012. Intake, rumen degradation and utilisation of urea-ammoniated grass hay by Kacang goats as affected by supplementation of sun-dried fish or fish meal. Anim. Prod. 14:77-86.

Khan, N. A., Q. Peng, H. Xin, & P. Yu. 2015. Vibrational spectroscopic investigation of heat-induced changes in functional groups related to protein structural conformation in camelina seeds and their relationship to digestion in dairy cows. Anim. Prod. Sci. 55:201-206.

Lee, C., A. N. Hristov, K. S. Heyler, T. W. Cassidy, H. Lapierre, G. A. Varga, & C. Parys. 2012. Effects of metabolizable protein supply and amino acid supplementation on nitrogen utilization, milk production, and ammonia emissions from manure in dairy cows. J. Dairy Sci. 95:5253-5268.

Leng, R. A., & J. V. Nolan. 1984. Nitrogen metabolism in the rumen. J. Dairy Sci. 67:1072-1089.

Licitra, G., T. M. Hernandez, & P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358.

Maxin, G., D. R. Ouellet, & H. Lapierre. 2013. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, and wheat dried distillers grains. J. Dairy Sci. 96:5151-5160.

McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, & R. G. Wilkinson. 2011. Animal Nutrition. 7th Ed. Prentice Hall, Harlow, England.

Oni, A. O., C. F. I. Onwuka, O. M. Arigbede, U. Y. Anele, O. O. Oduguwa, O. S. Onifade, & Z. L. Tan. 2011. Chemical composition and nutritive value of four varieties of cassava leaves grown in South-Western Nigeria. J. Anim. Physiol. Anim. Nutr. 95:583-590.

Pelletier, S., G. F. Tremblay, A. Bertrand, G. Belanger, Y. Castonguay, & R. Michaud. 2010. Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol. 157:139-150.

Riaz, M. Q., K. H. Sudekum, M. Clauss, & A. Jayanegara. 2014. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis. Livest. Sci. 162:76-85.

Rira, M., D. P. Morgavi, H. Archimede, C. Marie-Magdeleine, M. Popova, H. Bousseboua, & M. Doreau. 2015. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. J. Anim. Sci. 93:334-347.

Saez-Plaza, P., T. Michalowski, M. J. Navas, A. G. Asuero, & S. Wybraniec. 2013. An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. Crit. Rev. Anal. Chem. 43:178-223.

Soto-Blanco, B., & S. L. Gorniak. 2010. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats. Exp. Toxicol. Pathol. 62:361-366.

Sulabo, R. C., W. S. Ju, & H. H. Stein. 2013. Amino acid digestibility and concentration of digestible and metabolizable energy in copra meal, palm kernel expellers, and palm kernel meal fed to growing pigs. J. Anim. Sci. 91:1391-1399.

Tan, L., S. Eberhard, S. Pattathil, C. Warder, J. Glushka, C. Yuan, Z. Hao, X. Zhu, U. Avci, J. S. Miller, D. Baldwin, C. Pham, R. Orlando, A. Darvill, M. G. Hahn, M. J. Kieliszewski, & D. Mohnen. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270-287.

Tham, H. T., N. V. Man, & T. R. Preston. 2008. Estimates of protein fractions of various-heat treated feeds in ruminant production. Livest. Res. Rur. Dev. 20 (suppl.). [14 June 2015].

Tilley, J. M. A., & R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104-111.

Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.