Physicochemical Characteristics, in Vitro Fermentation Indicators, Gas Production Kinetics, and Degradability of Solid Herbal Waste as Alternative Feed Source for Ruminants

  • A. N. Kisworo Sekolah Tinggi Penyuluhan Pertanian (STPP) Bogor
  • A. Agus Department of Nutrition and Animal Feed, Faculty of Animal Science, Gadjah Mada University
  • Kustantinah Kustantinah Department of Nutrition and Animal Feed, Faculty of Animal Science, Gadjah Mada University
  • B. Suwignyo Department of Nutrition and Animal Feed, Faculty of Animal Science, Gadjah Mada University
Keywords: solid herbal waste, plant secondary metabolites, antimicrobial effect, in vitro rumen fermentation


The aims of this research were to study the nutrient and secondary metabolite contents of solid herbal wastes (SHW) that were preserved by freeze drying, sun drying and silage, as well as to analyze their effects on in vitro fermentation indicators i.e., gas production kinetics and degradability of solid herbal waste. Physical and chemical properties on three forms of SHW (sun dry, freeze dry, and silage) were characterized and then an in vitro gas production experiment was performed to determine the kinetics of gas production, methane production, NH3, microbial protein, and SHW degradability. Polyethylene glycol (PEG) was added to the three treatments to determine the biological activity of tannins. Results showed that all three preparations of SHW still contained high nutrient and plant secondary metabolite contents. Gas production, methane, NH3, microbial protein, in vitro degradability of dry matter (IVDMD) and organic matter (IVDOM) of SHW silage were lower (P<0.05) compared to sun dry and freeze dry. These results were apparently due to the high content of secondary metabolites especially tannin. It can be concluded that solid herbal wastes (SHW) can be used as an alternative feed ingredients for ruminants with attention to the content of secondary metabolites that can affect the process of fermentation and digestibility in the rumen.


Download data is not yet available.


Al-Dobaib, S. N. 2009. Effect of different levels of quebracho tannin on nitrogen utilization and growth performance of Nadji sheep feed alfafa (Medicago sativa) hay as a sole diet. J. Anim. Sci. 80: 532–541.

Amir, A. N. & P. F. Lestari. 2013. Pengambilan oleoresin dari limbah ampas jahe industri jamu (PT. Sido Muncul) dengan metode ekstraksi. J. Teknologi Kimia dan Industri. 2: 88-95.

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.

Blummel, M., H. Steingass, & K. Becker. 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of rhougages. Br. J. Nutr. 77: 911-921.

Bodas, R., N. Prieto, R. Garcia-Gonzalez, S. Andres, F. J. Giraldez, & S. Lopez. 2012. “Manipulation of rumen fermentation and methane production with plant secondary metabolites,” Anim. Feed Sci. and Technol. 176: 78–93.

Broderick G. A. & J. H. Kang. 1980. Automated simultaneous determination of jammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63: 64-75.

Bueno, I. C. S., D. M. S. S. Vitti, H. Louvandini, & A. L. Abdalla. 2008. A new approach for in vitro bioassay to measure tannin biological effects based on a gas production technique. Anim. Feed Sci. and Technol. 141: 153-170.

Chanthakhoun, V., M. Wanapat, P. Kongmun, & A. Cherdthong. 2012. Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livestock Science 143: 172–176.

Chanwitheesuk, A., A. Teerawutgulrag, & N. Rakariyatham. 2005. Screening of antioxidant activity and antioxidantcompounds of some edible plants of Thailand. Food Chemistry. 92: 491–497.

Danso-Boateng, E. 2013. Effect of drying methods on nutrient quality of Basil (Ocimum viride) leaves cultivated in Ghana. Int. Food Res. J. 20: 1569-1573.

Dordevic´, T. M., S. S. Šiler-Marinkovic´, & S. I. Dimitrijevic´-Brankovic´. 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry. 119: 957-963.

Gemeda, B. S. & A. Hassen. 2015. Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian-Australas. J. Anim. Sci. 28: 188-199.

Goel, G. & H. P. S. Makkar. 2012. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 4: 729–739.

Hartadi, H., S. Reksohadiprodjo, & A. D. Tillman. 2005. Tables of Feed Composition for Indonesia. Gadjah Mada University Press, Yogyakarta.

Herdian, H., L. Istiqomah, A. Febrisiantosa, & D. Setiabudi. 2011. Effect of addition of Morinda citrifolia leaf as saponin source on fermentation characteristics, protozoa defaunization, gas production and methane rumen fluids in vitro. (Article in Indonesian). JITV. 16: 98-103.

Islamiyati. 2010. In vitro dry matter digestibility of cocoa pods immersed in different alkaline solution. (Article in Indonesian). JITP. 1(1): 43-47.

Jayanegara, A. & A. Sofyan. 2008. Determination of some forage tannery activity in vitro using ‘Hohenheim Gas Test’ with polyethylene glycol as a determinant. (Article in Indonesian). Med. Pet. 31: 44-52.

Jayanegara, A., A. Sofyan, H. P. S. Makkar, & K. Becker. 2009. Gas production kinetics, organic matter digestibility and methane production in vitro in hay and straw diets supplemented by tannin-containing forages. Med. Pet. 32: 120-129.

Jayanegara, A., E. Wina, & J. Takahashi. 2014. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Australas. J. Anim. Sci. 27: 1426–1435.

Jayanegara, A., S. Marquardt, E. Wina, M. Kreuzer, & F. Leiber. 2013. In vitro indications for favourable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Br. J. Nutr. 109: 615-622.

Jayanegara, A., G. Goel, H. P. S. Makkar, & K. Becker. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209: 60-68.

Kamra, D. N., M. Pawar, & B. Singh. 2012. Effect of Plant Secondary Metaboliet on Rumen Methanogens and Methane Emisions By Ruminants. In.: Patra, A.K. Dietary Phytochemicals and Microbes. Spinger Dordrecht Heidelberg, New York London. p. 351-370.

Kellems, R. O. & D. C. Church. 2010. Livestock Feeds and Feeding. 6th ed. Prentice Hall, New York.

Kisworo, A. N., A. Agus, Kustantinah, & B. Suwignyo. 2016. Physicochemical characteristics identification and secondary metabolite analysis of solid herbal waste as source of feed rich fiber and supplement for ruminants. Animal Production. 18: 75-84.

Landete, J. M., J. A. Curiel, H. Rodrı’guez, B. de las Rivas, & R. Mun˜oz. 2008. Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem. 107: 320–326.

Liu, L., R. Zhang, Y. Deng, Y. Zhang, J. Xiao, F. Huang, W. Wen, & M. Zhang. 2017. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with a-amylase. Food Chem. 221: 636–643.

Mahfuz, S. U., M. R. Chowdhury, M.M. H. Khanc, & M. A. Baset. 2014. Effect of triple super phosphate supplementation on degradability of rice straw and ammonia nitrogen concentration. Small Ruminant Res. 120: 15–19.

Makkar, H. P. S., G. Francis & K. Becker. 2007. Bioactivity of phytochemicals in some lesserknown plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1: 1371-1391.

Makkar, H. P. S., M. Bluemmel, N. K. Borowy, & K. Becker. 1993. Gravimetric determination of tannins and their correlation with chemical and protein precipitation methods. J. Sci. Food Agric. 61: 161-165.

Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65: 2170-2173.

Manyawu, G., I. Chakoma, K. Gwezuva, L. Gwiriri, & S. Moyo. 2016. Principles of silage making in the subtropics. ILRI extension brief. Nairobi, Kenya.

Martins, S., S. I. Mussatto, M. G. Avila, M. J. Saenz, C. N. Aguilar, & J. A. Teixeira. 2011. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 29: 365-373.

Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, & W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science. 93: 217-222.

Menke, K.H. & H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28: 7–55.

Ministry of Health. 1995. Materia Medika Indonesia Jilid VI. Departemen Kesehatan Republik Indonesia.

Ministry of Health. 2008. Farmakope Herbal Indonesia Edisi I. Departemen Kesehatan Republik Indonesia.

Mitsumori, M. & W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas. J. Anim. Sci. 21: 144-154.

Moreira, L. M., F. P. Leonel, R. A. M. Vieira, & J. C. Pereira. 2013. A new approach about the digestion of fibers by ruminants. Rev. Bras. Saúde Prod. Anim. 14: 382-395.

Nasser, M. E. A., A. M. El Waziry, & S. M. A. Sallam. 2009. In Vitro Gas Production Measurements and Estimated Energy Value and Microbial Protein to Investigate Associative Effects of Untreated or Biological Treated Linen Straw and Berseem Hay. In: Papach ristou, T.G. (ed.), Z.M. Parissi (ed.), H. Ben Salem (ed.), & P. Morand-Fehr (ed.). Nutritional and Foraging Ecology of Sheep and Goats. Zaragoza: CIHEAM / FAO / NAGREF. p. 61-266 (Options Méditerranéennes : Série A. Séminaires. Méditerranéens; n . 85)

Navarro-Villa, A., M. O’Brien, S. López, T. M. Boland, & P. O’Kiely. 2013. In vitro rumen methane output of grasses and grass silages differing in fermentation characteristics using the gas-production technique. Grass Forage Sci. 68: 228–244.

Nazarni, R., D. Purnama, S. Umar, & H. Eni. 2016. The effect of fermentation on total phenolic, flavonoid and tannin content and its relation to antibacterial activity in jaruk tigarun (Crataeva nurvala, Buch HAM). IFRJ. 23: 309-315.

Nelson. 2011. Degradasi bahan kering dan produksi asam lemak terbang in vitro pada kulit buah kakao terfermentasi. Jurnal Ilmiah Ilmu-Ilmu Peternakan. 14: 44-50. https://online

Nurjana, D. J., S. Suharti, & Suryahadi. 2016. Improvement of napier grass silage nutritive value by using inoculant and crude enzymes from Trichoderma reesei and its effect on in vitro rumen fermentation. Med. Pet. 39: 46-52.

Oni, M. O., O. C. Ogungbite, & A. K. Akindele. 2015. The effect of different drying methods on some common Nigerian edible botanicals. IJARB. 1: 15-22.

Orskov & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Scince Publisher.

Orskov, E. R. & McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. Cambridge. 92: 499-503.

Oskoueian, E., N. Abdullah, & A. Oskoueian. 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Research International Volume 2013: 1-8.

Osman, M. A. 2011. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. Journal of the Saudi Society of Agric. Sci. 10: 1-6.

Othman, N. B., D. Roblain, N. Chammen, P. Thonart, & M. Hamdi. 2009. Antioxidant phenolic compounds loss during the fermentation of Chetoui olives. Food Chem. 116: 662-669.

Pashaei, S., V. Razmazar, & R. Mirshekar. 2010. Gas production: a proposed in vitro method to estimate the extent of digestion of a feedstuff in the rumen. Journal of Biological Sciences. 10: 573-580.

Patra, A. K. & J. Saxena. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews. 22: 204-219.

Patra, A. K. & J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 71: 1198 -1222.

Patra, A.K., B-R. Min, & J. Saxena. 2012. Dietary Tannin on Microbial Ecology of the Gastrointestinal Tract in Ruminants. In: Patra, A.K. (Ed). Dietary Phytochemicals and Microbes. p. 237–262. Spinger Dordrecht Heidelberg, New York, London.

Pellikaan,W. F., E. Stringano, J. Leenaars, D. J. G. M. Bongers, S. L. Schuppen, J. Plant, & I. Mueller-Harvey. 2011. Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evaluation system (APES). Anim. Feed Sci. Technol. 166-167: 377-390.

Pereira, T. C. J., M. L. A. Pereira, J. V. Moreira, J. a. G. Azevedo, R. Batista, V. F. Paula, B. S. Oliveira, & E. J. Santos. 2017. Effects of alkaloid extracts of mesquite pod on the products of in vitro rumen fermentation. Environ. Sci. Pollut. Res. 24:4301-431.

Plummer, D.T. 1987. An introduction to Practical Biochemistry. 3rd edition. pp. 332. McGraw-Hill (UK).

Ribeiro, Jr., G.O., A. M. Teixeira, F. O. Velasco, W. G. Faria Júnior, L. G. R. Pereira, A. V. Chaves, L. C. Gonçalves, & T. A. McAllister. 2014. Production, nutritional quality and in vitro methane production from Andropogon gayanus grass harvested at different maturities and preserved as hay or silage. Asian-Australas. J Anim Sci. 27: 330–341.

Rodríguez, H., J. A. Curiel, J. M. Landete, B. Rivas, F. L. Felipe, C. Gómez-Cordovés, J. M. Manche-o, & R. Mu-oz. 2009. Food phenolics and lactic acid bacteria. International Journal of Food Microbiology. 132: 79–90.

Santos, E. T., M. L. A. Pereira, C. F. P. G. Silva, L. C. Souza-Neta, R. Geris, D. Martins, A. E. G. Santana, L. A. Barbosa, H. G. O. Silva, G. C. Freitas, M. P. Figueiredo, F. F. Oliveira, & R. Batista. 2013. Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion. Int. J. Mol. Sci. 14: 8496-8516.

Seradj, A.R., L. Abecia, J. Crespo, D. Villalba, M. Fondevila, & J. Balcells. 2014. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim. Feed Sci. Technol. 197:85–91.

Stahl, E. 1985. Analisis Obat secara Kromatografi dan Mikroskopi. Penerjemah: Padmawinata, K. dan I. Sudiro. Penerbit ITB, Bandung.

Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, & Y.W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169: 185-193.

Utomo, R. 2016. Konservasi Hijauan Pakan dan Peningkatan Kualitas Bahan Pakan Berserat Tinggi. Gadjah Mada University Press, Yogyakarta.

Utomo, R., M. Soejonoa, B. P. Widyobroto, & Sudirman. 2011. Determination of in vitro digestibility of tropical feeds using cattle faeces as rumen fluid alternative. Med. Pet. 34: 207-211.

Valli, V., A. M. Gómez-Caravaca, M. D. Nunzio, F. Danesi, M. F. Caboni, & A. Bordoni. 2012. Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. J. Agric. Food Chem. 60: 12508-12515.

Wink, M. 2015. Modes of action of herbal medicines and plant secondary metabolites, a review. Medicines. 2: 251-286.