Main Article Content
Abstract
Abstract
The exhaust heat of steam power plant has considerable energy potential that can be recovered for various processes, one of which is for the drying of materials. The purpose of this research is to know the performance of a copra dryer by utilizing exhaust heat from coconut shell charcoal fired power plant which has been developed by P3TKEBTKE. Copra dyers consisting of a fan, heat exchangers, and a drying chamber are installed on the boiler combustion flue gas duct as the heat source. This research was conducted by varying fan speed at 2.2 m/s and 3.7 m/s. The results show the drying room temperature between 36-130°C, are not equally distributed. The test results with the air flow rate of 4.14 m3/m shows the average temperature of 72.18°C drying copra final moisture content 17.72%, the drying rate of 4.72%, energy consumed 55.97 MJ/kg, thermal efficiency 20,90% and drying efficiency of 4.83%. While the test results with an air floe rate of 6.97 m3/m shows better results with an average temperature of 68.13°C drying copra final moisture content 16.05%, the drying rate of 5.1%, energy consumed 32.47 MJ/kg, thermal efficiency 55.57% and drying efficiency of 8,25%..
Abstrak
Panas buang PLTU memiliki potensi energi yang cukup tinggi yang dapat dimanfaatkan kembali untuk berbagai proses, salah satunya untuk pengeringan bahan. Tujuan dari penelitian ini adalah untuk mengetahui unjuk kerja alat pengering dengan memanfaatkan panas buang dari PLTU berbahan bakar
arang tempurung kelapa yang telah dikembangkan oleh P3TKEBTKE. Alat pengering tipe rak yang terdiri dari komponen kipas, heat exchanger, dan ruang pengering dipasang pada saluran gas buang pembakaran boiler sebagai sumber panasnya. Pada penelitian ini dilakukan pengujian dengan variasi laju alir udara
4.14 m3/m dan 6.97 m3/m. Hasil pengujian dengan laju alir udara 4,14 m3/m menunjukkan rata-rata suhu pengeringan 72.18°C kadar air kopra akhir 17.72%, laju pengeringan 4.72%, kebutuhan energi untuk menguapkan air dari produk kopra adalah 55.97 MJ/kg, efisiensi termal pengering 20.90%, dan efisiensi sistem pengeringan 4.83%. Sedangkan hasil pengujian dengan kecepatan 3.7 m/s menunjukkan hasil lebih baik dengan rata-rata suhu pengeringan 68.13°C kadar air kopra akhir 16.05%, laju pengeringan 5.1%, kebutuhan energi untuk menguapkan air dari produk kopra adalah 32.47 MJ/kg, efisiensi termal pengering 55.57%, dan efisiensi sistem pengeringan 8.25%.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Abdullah, K., Tamrin, F. Wenur, dan D. Wulandari, 1994. Optimasi dalam perencanaan alat pengering hasil pertanian dengan energi surya. Laporan
- Akhir Penelitian Hibah Bersaing I. Ditjern DIKTI. Departemen Pendidikan dan Kebudayaan RI, IPB, Bogor
- Al-Kindi, H., Y.A. Purwanto, dan D. Wulandari, 2015. Analisis Udara Panas pada Pengering Tipe Rak dengan Sumber Energi Gas Buang. Jurnal
- Keteknikan Pertanian Vol. 3 No.1. Anonim, 2006. Pemanfaatan Limbah Panas. PedomanEfisiensi Energi untuk Industri di Asia. UNEP (United Nations Environment Programme) www. energyefficiencyasia.org. Flue Gases Properties Table. www.pipeflowcalculations.com.
- Guarte, R.C., W. Muhlbaueur, and M. Kellert, 1996. Drying characteristic of copra and quality of copra and coconut oil. Postharvest Biology and
- Technology 9: 361-372
- Ion, D., 2013. Energy Balance of a Coal-Fired Plant in Condensing Operation. Advances in Environment Technologies, Agriculture, Food and Animal Sciences
- Junaidi, Bukhari dan Maimuzar, 2011. Pengembangan dan Evaluasi Teknis Alat Pengering Kopra Jenis Tray Dryer. Poli Rekayasa Volume 7 No. 1
- Mohanraj, M. dan P. Chandrasekar, 2008. Comparison of Drying Characteristics and Quality of Copra Obtained in a Forced Solar Drier and Sun drying. Journal of Scientific and Industrial Research Vol. 67, pp. 381-385.
- Nafis, S., D. Suntoro, dan A.I. Firmansyah, 2015. Analisis Aliran Fluida Alat Pengering Produk Pertanian memanfaatkan Panas Buang Tungku
- Boiler PLT-Biomassa. Ketenagalistrikan dan Energi Terbarukan Vol.14 No. 1: 55-70
- Qhurtubi, A., 2010. Persancangan dan Pengujian Alat Pengering Kopra dengan Tipe Cabinet Dryer untuk Kapasitas 6 kg Per-Siklus. Skripsi Jurusan Teknik Mesin USU
- Sayful, M., dan Hargono. 2009. Profil suhu pada proses pengeringan produk pertanian dengan simulasi computational Fluid dynamics (CFD). Reaktor Vol.
- 12(3): 195-202.
- Sulaeman dan M. Rusyadi, 2013. Analisa Efisiensi Rooftop Solar Copra Dryer Dengan Susunan Kolektor Secara Seri. Jurnal Teknik Mesin Vol. 3,
- No.2: 70-77
- Tesha, 2006. Utilization of Brine Water for Copra Drying in Lahendong Geothermal Field, Indonesia. The United Nations University: Geothermal Training Programme Report
- Triyono, S., A. Haryanto, dan R.S. Haryati, 2008. Rancang Bangun dan Uji Kinerja Alat Pengering Kopra Tipe Rak Berbahan Bakar Biomassa.
- Jurusan Teknik Pertanian Universitas Lampung.
- Walujodjati, A., 2009. Pengaruh Kecepatan Fan Terhadap Temperatur Perpindahan Panas Aliran Udara dalam Pipa dengan Fluks Panas Permukaan Konstan. Momentum Vol. 5 No. 2:46-49.