Main Article Content

Abstract

Abstract

Various methods for detecting termites in the wood have been developed, one of those was based on acoustic emission. Eventhough, that method was difficult to distinguish the signal generated by termites or interference noise from the environment. It could be solved through a combination of acoustic emission and behavior of termites. Therefore, the purposes of this study were to analyze the acoustic signal and the moisture content to classify infested and uninfested wood by termites. The wood used in this study were made from Pinus logs, in air dried condition, which measure of 20(l) x 9.5(w) x 2.5(h) cm. Five wood were infested by 220 of C. curvignathus (‘infested wood’), the others were in sound condition (‘uninfested wood’). The acoustic signal was analyzed by FFT (Fast Fourier Transform) to transform from the time domain into the frequency domain. The results showed that moisture content of infested wood (11.94±0.792%) was higher than uninfested board (10.82±0.525%). Whereas the results of the acoustic signal indicated that the value of zero moment power of infested wood as well as uninfested wood, i.e., 13.405±3.019 and 9.573±2.188 respectively. Finally, the parameters which able to classify infested and uninfested wood by termites significantly were moisture content and the zero moment power.

Abstrak

Berbagai metode untuk mendeteksi rayap di dalam kayu telah dikembangkan, salah satunya adalah berbasis emisi akustik. Namun, metode tersebut kesulitan untuk membedakan sinyal yang diakibatkan oleh rayap atau pengaruh gangguan dari lingkungan. Hal tersebut dapat diatasi dengan mengkombinasikan emisi akustik dengan perilaku rayap. Tujuan dari penelitian ini adalah untuk menganalisis sinyal emisi akustik dan kadar air untuk mengklasifikasikan kayu yang terserang oleh rayap dan tidak terserang oleh rayap. Kayu yang digunakan pada penelitian ini dibuat dari kayu pinus, pada kondisi kering dengan ukuran 20 (p) x 9.5 (l) x 2.5 (t) cm. Lima kayu terserang sebanyak 220 rayap C. Curvignathus (‘kayu terserang’), kayu lain dalam keadaan baik (‘kayu normal’). Hasil menunjukkan bahwa kadar air dari kayu terserang oleh rayap (11.94±0.792%) lebih tinggi dibandingkan kayu normal (10.82±0.525%). Sedangkan hasil dari sinyal akustik menunjukkan bahwa nilai zero moment power pada kayu terserang oleh rayap dan kayu normal secara berurutan adalah 13.405±3.019 dan 9.573±2.188. Selanjutnya, parameter yang mampu untuk mengklasifikasikan kayu yang terserang oleh rayap dan kayu normal secara signifikan adalah parameter kadar air dan zero moment power

Keywords

Acoustic signal moisture content termites

Article Details

References

  1. Farkhanda, M. 2013. Biosensors for termite control. IOP Conference Series: Materials Science and Engineering: Oktober 2014. p. 1-3. http://doi.org/10.1088/1757-899X/51/1/012014.
  2. Giannakopoulos, T., A. Pikrakis. 2014. Introduction to Sound Analysis. Elsevier. USA
  3. Gouge, D.H., C. Olson, P. Baker. 2001. Drywood termites. Arizona Cooperative Extension. Arizona. http://ag.arizona.edu/pubs/insects/
  4. az1232/.
  5. Grosse, C.U., M. Ohtsu. 2008. Acoustic emission testing. Springer Verlag. Germany
  6. Gutierrez, A., V. Ruiz,. E. Molto,. G. Tapia,. M.D.M.Tellez. 2010. Development of a bioacoustic sensor for the early detection of red palm weevil (Rhynchophorus ferrugineus). Journal Crop Protection. Vol. 29 (7): 671-676. http://doi.org/10.1016/j.cropro.2010.02.001.
  7. Hager, F. A., W. H. Kirchner. 2013. Vibrational long-distance communication in the termites Macrotermes natalensis. Journal of Experimental Biology Vol.216 (17). 3249–3256. http://doi.
  8. org/10.1242/jeb.086991.
  9. Iii, F. G., R. A. Arango,. C. R. Boardman,. K. J. Bourne,. J. C. Hermanson,. R. A.Munson. 2015. Remote sensing for detection of termite infestations. Proceedings IRG Annual Meeting: The International Research Group on Wood Protection. Chile, May, 10-14 2015. p. 1-10.
  10. Indrayani, Y., T. Yoshimura,. Y. Yanase,. Y. Fujii,. Y. Imamura,. 2006. Evaluation of the temperature and relative humidity preferences of the western dry-wood termite incisitermes minor (hagen) using acoustic emission (AE) monitoring. Journal of Wood Science Vol.53(1) : 76–79. http://doi. org/10.107/s10086-006-0817-0.
  11. Johnson, R.A., D.W. Wichern,. 2007. Applied Multivariate Statistical Analysis 6th Ed. Pearson Education. New Jersey (US)
  12. Le, S., S. Vaiedelich,., J. Thomas,. 2014. Acoustic emission to detect xylophagous insects in wooden musical instrument. Journal of Cultural Heritage 1–6. http://doi.org/10.1016/j.culher.2014.07.001.
  13. Lewis, V., S. Leighton,. R. Tabuchi,. M. Haverty,.
  14. 2011. Seasonal and daily patterns in activity of
  15. the western drywood termite, incisitermes minor
  16. (hagen). Journal of Insects Vol. 2(4): 555–563.
  17. http://doi.org/10.3390/insects2040555.
  18. Matsuoka, H., Fuji Y., S. Okumura., Y. Imamura., T. Yoshimura. 1996. Relationship between the type of feeding behavior of termite and the acoustic emission (AE) generation. Wood Research Vol.83 : 1-7.
  19. Nandika, D., B. Tambunan,. 1990. Biodeteriorasi kayu oleh faktor biologis. Pusat Antar Universitas Bioteknologi Institut Pertanian Bogor. Bogor.
  20. Nandika, D., Y. Rismayadi,. F. Diba,. 2015. Rayap: biologi dan pengendaliannya edisi ke-2. Muhammadiyah University Press. Surakarta..
  21. Niemz, P., D. Mannes,. 2012. Non-destructive testing of wood and wood-based materials. Journal of Cultural Heritage Vol. 13(3): 26–34.
  22. http://doi.org/10.1016/j.culher.2012.04.001.
  23. Rach, M.M., H.M. Gomis,. O.L. Granado,. M.P. Malumbres,. A.M. Campoy,. J.J.S. Martin. 2013. On the Design of a Bioacoustic Sensor for the Early Detection of the Red Palm Weevil. Sensor journal Vol.13 : 1706–1729. http://doi. org/10.3390/s130201706.
  24. Rosadela, J. J. G., G.G. Puntonet,. I. Lloret, . 2005. An application of the independent component analysis to monitor acoustic emission signals
  25. generated by termite activity in wood. Journal of the International Measurement Confederation Vol.37(1): 63–76. http://doi.org/10.1016/j.
  26. measurement.2004.08.002.
  27. Solos, J., G.C. Haugh,. 1998. Nondestructive detection of hollow heart in potatoes using ultrasonics. (Tesis). Department Of Biological Systems Engineering. Virginia Polytechnic Institute And State University. Virginia.
  28. Unterwieser, H., G. Schickhofer,. 2011. Influence of moisture content of wood on sound velocity and dynamic moe of natural frequency and ultrasonic runtime measurement. European Journal of Wood and Wood Products Vol 69(2):171–181.
  29. Vernard, R.L., Power, A.B., Michael. 2007. Surface and subsurface perfomance in acoustically detecting the western dry wood termite in
  30. naturally infested board. Forest Product Journal Vol.54 (6): 57-61.