Distribusi Sifat Kimia Gambut di Perkebunan Sawit dan Hubungannya dengan Kedalaman Lapisan Gambut dan Jarak dari Tanah Mineral Berbahan Induk Batuan Ultrabasa

Selected Chemical Peat Properties Distribution in Palm Oil Plantation and Its Relationship with Depth Layer and Distance from Mineral Soil Derived From Ultrabasic Rocks

  • Heru Bagus Pulunggono Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Moh. Zulfajrin Program Studi Manajemen Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Arief Hartono Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
Kata Kunci: gambut, hara makro dan mikro, tanah mineral berbahan induk ultrabasa

Abstrak

Lahan gambut di lokasi penelitian yang digunakan untuk perkebunan sawit berdampingan dengan tanah mineral berbahan induk ultrabasa berkadar Mg tinggi. Tanah berkadar Mg tinggi dapat mengakibatkan terhambatnya pertumbuhan tanaman dan gangguan serapan hara. Penelitian ini bertujuan mempelajari distribusi beberapa sifat kimia tanah seperti pH; kandungan unsur kalium (K), kalsium (Ca), magnesium (Mg), natrium (Na) dapat ditukar; besi (Fe), mangan (Mn), tembaga (Cu), seng (Zn) total dan terekstrak DTPA dalam gambut dan hubungannya dengan kedalaman lapisan gambut dan jarak terhadap tanah mineral berbahan induk batuan ultrabasa. Contoh gambut sekitar 1,0 kg diambil secara komposit dari setiap kedalaman gambut 0 – 30, 30 – 60 dan 60 – 90 cm pada transek toposekuen dari setiap jarak 100, 200, 300, 400, 500 dan 600 m dari perbatasan tanah mineral ultrabasa. Analisis contoh gambut dilakukan untuk menetapkan (i) kapasitas tukar kation (KTK) dan pH H2O 1:5; (ii) kandungan hara makro K, Ca, Mg dan benefisial Na menggunakan amonium asetat 1 N pH 7; dan (iii) kandungan total unsur mikro Fe, Cu, Zn, Mn serta kandungan unsur-unsur tersebut dengan pengekstrak DTPA. Hasil penelitian menunjukkan nilai pH gambut menurun sangat nyata berdasarkan kedalaman lapisan gambut dan cenderung menurun dengan semakin jauh dari tanah mineral. Nilai KTK berfluktuasi dan cenderung meningkat sesuai peningkatan kedalaman lapisan gambut dan jarak dari tanah mineral. Berdasarkan hasil pengukuran Mg dan Fe, hara yang berasal dari tanah mineral mempengaruhi gambut hingga jarak 600 m dari batas gambut. Tanah gambut mengandung Mg, Na, Fe, Mn, dan Zn tersedia dalam kadar tinggi dan K and Ca tersedia dalam kadar rendah. Hara Cu tersedia tergolong cukup pada semua kedalaman dan jarak  kecuali kedalaman 60 – 90 cm dan jarak 600 meter. Kandungan hara benefisial Na menunjukkan korelasi positif dengan kedalaman lapisan gambut yang mengindikasikan pengaruh marin pada tanah mineral bawah gambut. Disparitas yang besar antara Mg dengan kation lain dapat mengganggu penyerapan hara oleh akar tanaman dan memungkinkan pencucian K dan Ca keluar dari solum.

Unduh

##plugins.generic.usageStats.noStats##

Referensi

Alhammadi, M.S. and G.P. Edward. 2009. Effect of salinity on growth of twelve cultivars of the United Arab Emirates date palm. Commun. Soil Sci. Plan., 40: 2372-2388

Amory, D.E. and J.E. Dufey. 1984. Adsorption and exchange of Ca, Mg and K-ions on the root cell walls of clover and rye-grass. Plant. Soil., 80:181-190

[Balittanah] Balai Penelitian Tanah. 2009. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. B.H. Prasetyo, D. Santoso, L.R. Widowati (Eds.). Balai Penelitian Tanah, Bogor. Pp. 211–213.

Broadley, M., P. Brown, I. Cakmak, J.F. Ma, Z. Rengel and F. Zhao. 2012. Beneficial Elements. In: Marschner P (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Elsevier, London. Pp. 249–257

Clymo, R.S. 1964. The origin of acidity in sphagnum bogs. Bryologist, 67(4): 427–431.

Fauque, G.D. 1995. Ecology of sulfate-reducing bacteria. In L.L. Barton (Ed.). Sulfate-Reducing Bacteria. Biotechnology Handbooks. 8th Edition. Springer. Boston. p.217–241.

Firmansyah, E. 2018. Perubahan morfologis dan anatomis kelapa sawit pada rezim air dan salinitas berbeda. J. Agro., 5(1): 13-29.

Fu, W., J. Yang, M. Yang, B. Pang, X. Liu, H. Niu and X. Huang. 2014. Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. J. Asian. Earth. Sci., 93: 74–88.

Ghafoor. A., M.I. Shahid, M. Saghir and G. Murtaza. 1992. Use of high-Mg brackish water on phosphogypsum and fym treated saline-sodic soil. II. Growth of wheat and rice. Pak. J. Agri. Sci., 29(3): 298–302.

Hall, R. and E.J. Wilson. 2000. Neogene suture in Eastern Indonesia. J. Asian Earth Sci., 18: 781–808.

Hawkesford. M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Møller and P. White. 2012. Functions of Macronutrients. Beneficial Elements. In P. Marschner (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Elsevier, London. Pp. 135–189.

Hikmatullah and Sukarman. 2014. Physical and chemical properties of cultivated peat soils in four trial sites of ICCTF in Kalimantan and Sumatra, Indonesia. J. Trop. Soils, 19(3): 131–141.

Jenny, H. 1966. Pathways of ions from soil into root according to diffusion models. Plant. Soil, 25(2): 265–289.

Kadarusman, A., S. Miyashita, S. Maruyama, C.D. Parkinson and A. Ishikawa. 2004. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics, 392: 55–83.

Kopittke, P.M. and N.W. Menzies. 2005. Mg induced Ca deficiency under alkaline conditions. Plant. Soil, 269: 245–250.

Lindsay, W.L. and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil. Sci. Soc. Am. J., 42: 421–428.

Lund, Z.F. 1970. The effect of calcium and its relation to several cations in soybean root growth. Soil Sci. Soc. Am. J., 34(3): 456.

Miller, R.O. 1998. Nitric-perchloric acid wet digestion in an open vessel. In YP Kalra (Eds.), Handbook of Reference Methods for Plant Analysis. CRC Press, Taylor & Francis Group. New York. Pp. 57–62.

Miyajima, T., E. Wada, Y.T. Hanba and P. Vijarnsorn. 1997. Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim. Cosmochim. Ac., 61(17): 3739–3751.

Morrissey, E.M., J.L. Gillespie, J.C. Morina and R.B. Franklin. 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob. Change Biol., 20(4): 1351–1362.

Mulyani, A., D. Nursyamsi dan D. Harnowo. 2016. Potensi dan Tantangan Pemanfaatan Lahan Suboptimal untuk Tanaman Aneka Kacang dan Umbi. In: A.A. Rahmianna, D. Harnowo, Sholihin, N. Nugrahaeni, A. Taufiq, Suharsono, E. Yusnawan, E. Ginting, F. Rozi, Hermanto (Eds.), Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi; 2016 25 Mei; Malang. Badan Penelitian dan Pengembangan Pertanian, Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor. Pp. 16–30.

Mulyani, A. dan M. Sarwani. 2013. Karakteristik dan potensi lahan sub optimal untuk pengembangan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 7(1): 47–55.

Ngadze, E., T.A. Coutinho, D. Icishahayo and J.E. van der Waals. 2014. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Protection, 62: 40–45.

Noor, M., Masganti, F. dan Agus. 2014. Pembentukan dan Karakteristik Gambut Tropika Indonesia. In F. Agus, M. Anda, A. Jamil, and Masganti (Eds.). Lahan Gambut Indonesia: Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan. Badan Penelitian dan Pengembangan Pertanian, Bogor. Pp. 7–32.

Page, S.E., R.A.J. Wüst, D. Weiss, J.O. Rieley, Ò.W. Shotyk and S.H. Limin. 2004. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quaternary. Sci., 19(7): 625–635.

Parkinson, C. 1998. Emplacement of the East Sulawesi Ophiolite : evidence from subophiolite metamorphic rocks. J. Asian. Earth. Sci., 16(1): 13-28.

Pester, M, K.H. Knorr, M.W. Friedrich, M. Wagner and A. Loy. 2012. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Front. Microbiol., 72(3): 1–19.

Ritung, S., E. Suryani, E. Yatno, Hikmatullah, K. Nugroho, Sukarman, R.E. Subandiono, M. Hikmat, C. Tafakresnanto, Suratman, H. Hidayat, D. Sudrajat, Ponidi, U. Suryana, W. Supriatna and A. Hartadi. 2019. Peta Lahan Gambut Indonesia Skala 1:50.000. December 2019 Edition. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor. 13 p.

Riwandi. 2001. Kajian stabilitas gambut tropika Indonesia berdasarkan analisis kehilangan karbon organik, sifat fisiko-kimia, dan komposisi bahan gambut [Tesis]. IPB, Bogor.

Sabiham, S. 2010. Properties of Indonesian Peat in relation to the chemistry of carbon emission. In: Z.-N. Cheng and F. Agus (Eds.), International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries. 2010 28-29 September; Bogor. Balai Penelitian Tanah, Bogor. Pp. 205–216.

Sabiham, S. 1988. Studies on peat in the coastal plains of Sumatra and Borneo. Part I: physiography and geomorphology of the coastal plains. Southeast Asian Studies, 27(4): 461-484.

Sabiham, S. and H. Furukawa. 1986. Problem soils in Southeast Asia: a study of floral composition of peat soil in the Lower Batang Hari River Basin of Jambi, Sumatra. Southeast Asian Studies, 24(2): 113–132.

Schollenberger, C.J. and R.H. Simon. 1945. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil. Sci., 59(1): 13–24.

Sitorus, S.R.P., M. Mulyani dan D.R. Panuju. 2011. Konversi lahan pertanian dan keterkaitannya dengan kelas kemampuan lahan serta hirarki wilayah di Kabupaten Bandung Barat. J. Tanah. Lingk., 13(2): 49–57.

Sjöström, E. 2013. Wood Chemistry: Fundamentals and Applications. 2nd Edition. Academic Press, San Diego.

Smith, R.M and D.E. Hansen. 1998. The pH-rate profile for the hydrolysis of a peptide bond. J. Am. Chem. Soc., 120: 8910–8913.

Sollins, P., P. Homann and B.A. Caldwell. 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74: 65–105.

Spearman, C.E. 1904. The proof and measurement of association between two things. Am. J. Psychol., 15: 72–101.

Spearman, C.E. 1906. ‘Footrule’ for measuring correlation. Brit. J. Psychol., 2: 89-108.

Strehse, R., H. Bohne, Y. Amha and P. Leinweber. 2018. The influence of salt on dissolved organic matter from peat soils. Org. Geochem., 125: 270–276.

Tim Fakultas Pertanian. 2012. Evaluasi hasil pemupukan Pamafert di kebun kelapa sawit PT Gawi Bahandep Sawit Mekar. Sampit, Kalteng. Kerjasama Departemen Ilmu Tanah, Fakultas Pertanian IPB – PT Sri Rejeki Fertilizer, Bogor.

[USDA] United States Department of Agriculture. 2019. Oilseeds: World Markets and Trade. Foreign Agricultural Service, United States Department of Agriculture. Washington DC.

Watanabe, T., Y. Hasenaka, Suwondo, S. Sabiham and S. Funakawa. 2013. Mineral nutrient distributions in tropical peat soil of Riau, Indonesia with special reference to peat thickness. Jpn. Soc. Pedol., 57(2): 64–71.

Yonebayashi, K., J. Pechayapisit, P. Vijarnsorn, A.B. Zahari and K. Kyuma. 1994. Chemical alterations of tropical peat soils determined by Waksman's proximate analysis and properties of humic acids. Soil. Sci. Plant. Nutr., 40(3): 435–444.

Zhang, X.C. and L.D. Norton. 2002. Effect of exchangeable Mg on saturated hydrolic conductivity, disaggregation, and clay dispersion of disturbed soil. J. Hydrol., 260: 194–205.

Diterbitkan
2020-04-01
##submission.howToCite##
PulunggonoH. B., ZulfajrinM., & HartonoA. (2020). Distribusi Sifat Kimia Gambut di Perkebunan Sawit dan Hubungannya dengan Kedalaman Lapisan Gambut dan Jarak dari Tanah Mineral Berbahan Induk Batuan Ultrabasa: Selected Chemical Peat Properties Distribution in Palm Oil Plantation and Its Relationship with Depth Layer and Distance from Mineral Soil Derived From Ultrabasic Rocks. Jurnal Ilmu Tanah Dan Lingkungan, 22(1), 22-28. https://doi.org/10.29244/jitl.22.1.22-28