Estimasi Dampak Urban Heat Island terhadap Laju Evapotranspirasi: Studi Kasus di Kota Palembang

Estimation the Impact of Urban Heat Island on Evapotranspiration Rate: A Case Study in Palembang City

  • Ari Sugiarto IPB University
  • Budi Indra Setiawan IPB University
  • Chusnul Arif IPB University
  • Satyanto Krido Saptomo IPB University
Keywords: Air temperature, Evapotranspiration rate, Palembang city, Urban Heat Island

Abstract

A review of air temperature in the Palembang city by reviewing data from the National Agency for Meteorology, Climatology, and Geophysics/BMKG (Kenten Climatology Station and the SMB II Meteorological Station) shows a difference in air temperature can indicate the occurrence of Urban Heat Island (UHI). The difference in air temperature affects the evapotranspiration rate (ET) because air temperature very influencing water evaporation. ET rate estimation with air temperature data is the first step to prove this hypothesis. Hargreaves and Samani, Blaney and Criddle, Linacre, and Kharuffa models is the ET model that using air temperature as the variable was used to estimate the ET rate. Air temperature data used in the period 2011-2020 by reviewing data from the Kenten Climatology Station and the SMB II Meteorological Station. The results of this study of air temperature data from the Kenten Climatology Station and the SMB II Meteorology Station showed a difference in air temperature with the minimum ∆T of 0.42 oC, the maximum of 0.43 oC, and the daily average of 0.41 oC. This difference in air temperature has an impact on the difference in the ET rate with the average ∆ET of the Hargreaves and Samani model of 0.05 mm/day, the Blaney and Criddle model of 0.05 mm/day, the Linacre model of 0.06 mm/day, and the Kharuffa model of 0.14 mm/day. The results of this study predicted that an increase in air temperature causes an increase in the ET rate of ± 10-30%.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik Kota Palembang. (2020). Kota Palembang dalam Angka (Palembang Municipality in Figures) 2020 (B. P. S. K. Palembang (ed.)). Badan Pusat Statistik Kota Palembang. https://palembangkota.bps.go.id

Data Online Pusat Database- BMKG. (n.d.). Data Harian, PUSAT DATABASE-BMKG. BMKG. Diambil 25 September 2020, dari http://dataonline.bmkg.go.id/data_iklim

E. Torres Molina, L., Morales, S., & F. Carrión, L. (2020). Urban Heat Island Effects in Tropical Climate. In Vortex Dynamics Theories and Applications (hal. 1–17). IntechOpen. https://doi.org/10.5772/intechopen.91253

Elliot, T., Babí Almenar, J., & Rugani, B. (2020). Modelling the relationships between urban land cover change and local climate regulation to estimate urban heat island effect. Urban Forestry & Urban Greening, 50, 126650. https://doi.org/10.1016/j.ufug.2020.126650

Fang, D., Hao, L., Cao, Z., Huang, X., Qin, M., Hu, J., Liu, Y., & Sun, G. (2020). Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. Journal of Hydrology, 587, 124869. https://doi.org/10.1016/j.jhydrol.2020.124869

Huang, J.-M., Chang, H.-Y., & Wang, Y.-S. (2020). Spatiotemporal Changes in the Built Environment Characteristics and Urban Heat Island Effect in a Medium-Sized City, Chiayi City, Taiwan. Sustainability, 12(1), 365. https://doi.org/10.3390/su12010365

Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2019). Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather and Climate Extremes, 25, 100217. https://doi.org/10.1016/j.wace.2019.100217

Linacre, E. T. (1977). A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agricultural Meteorology, 18(6), 409–424. https://doi.org/10.1016/0002-1571(77)90007-3

Marando, F., Salvatori, E., Sebastiani, A., Fusaro, L., & Manes, F. (2019). Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 392, 92–102. https://doi.org/10.1016/j.ecolmodel.2018.11.011

Mauree, D., Coccolo, S., & Scartezzini, J.-L. (2019). Impact of evapotranspiration on the local microclimate. Journal of Physics: Conference Series, 1343, 012009. https://doi.org/10.1088/1742-6596/1343/1/012009

Moratiel, R., Bravo, R., Saa, A., Tarquis, A. M., & Almorox, J. (2020). Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain). Natural Hazards and Earth System Sciences, 20(3), 859–875. https://doi.org/10.5194/nhess-20-859-2020

Muharomah, R; Budi, I. S; Mohamad, Y. J. L. (2020). Temporal Crop Coefficients and Water Productivity of Lettuce (Lactuca sativa L.) Hydroponics in Planthouse. AgricEngIntAgricultural Engineering International: CIGR Journal, 22(1), 22–29. https://cigrjournal.org/index.php/Ejounral/article/download/5656/3231

Shirmohammadi-Aliakbarkhani, Z., & Saberali, S. F. (2020). Evaluating of eight evapotranspiration estimation methods in arid regions of Iran. Agricultural Water Management, 239, 106243. https://doi.org/10.1016/j.agwat.2020.106243

Singh Rawat, K., Kumar Singh, S., Bala, A., & Szabó, S. (2019). Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agricultural Water Management, 213, 922–933. https://doi.org/10.1016/j.agwat.2018.12.002

Sugiarto, A. (2018). Pengaruh Peningkatan Suhu Udara Terhadap Laju Transpirasi Bibit Lansium BIBIT Lansium domesticum Corr (Nomor July 2018) [Universitas Sriwijaya]. http://repository.unsri.ac.id/id/eprint/2286

Van Lier, H. N; Pereira, L. S; Steiner, F. R. (1999). CIGR Handbook of Agricultural Engineering Volume 1: Land and Water Engineering. American Society of Agricultural Engineers. https://www.project-management-tool.eu/cigr/sites/default/files/documets/CIGRHandbookVol1.pdf

Wang, Y., Zhang, Y., Ding, N., Qin, K., & Yang, X. (2020). Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sensing, 12(3), 578. https://doi.org/10.3390/rs12030578

Xiang, K., Li, Y., Horton, R., & Feng, H. (2020). Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management, 232, 106043. https://doi.org/10.1016/j.agwat.2020.106043

Published
2021-04-28
How to Cite
1.
Sugiarto A, Setiawan BI, Arif C, Saptomo SK. Estimasi Dampak Urban Heat Island terhadap Laju Evapotranspirasi: Studi Kasus di Kota Palembang: Estimation the Impact of Urban Heat Island on Evapotranspiration Rate: A Case Study in Palembang City. J-Sil [Internet]. 2021Apr.28 [cited 2024Mar.28];6(1):23-4. Available from: https://jurnal.ipb.ac.id/index.php/jsil/article/view/34965
Section
Research Articles

Most read articles by the same author(s)