Selenium Application in Improving Chicory (Cichorium intybus) Productivity and Quality

N. Umami, E. R. V. Rahayu, B. Suhartanto, A. Agus, M. M. Rahman

Abstract

Selenium (Se) is an essential mineral element needed by livestock and human. The amount of Se intake is largely determined by the Se content in the plants (food and feed) consumed. This study aimed to analyze the effect of Se fertilizer on the morphological characters, biomass yield, nutrient content, and in vitro nutrient digestibility of Cichorium intybus. This study was conducted for four months, starting from May to August 2019, located at the Faculty of Animal Science, Universitas Gadjah Mada. The seeds of Cichorium intybus var. Chico was sown in 24 plots and the plots were arranged in a completely randomized block design. Three levels of Se fertilization treatments (0, 3.5, and 7.5 mg/m2) were applied with 8 replicates. Plant defoliation on every 45 days: namely the first defoliation (from sowing to 45 days), the second defoliation (regrowth 1 up to 45 days), and the third defoliation (regrowth 2 up to 45 days). In all studied parameters, the results showed that chicory with Se fertilizer (3.5 and 7.5 mg/m2) was higher (p<0.05) than chicory without Se fertilization. The chicory with Se fertilizer at the level of 7.5 mg/m2 had higher (p<0.05) leaf width, biomass yield, crude protein, and Se content, and in vitro nutrient digestibility (dry matter, organic matter, crude protein) compared to that with Se fertilizer at the level of 3.5 mg/m2. Chicory at the third defoliation had a higher biomass yield and Se content than at the second defoliation. In conclusion, the best combination from this study was the third defoliation, with Se fertilizer level of 7.5 mg/m2.

References

Al-Tameemi, H. J. H., N. J. AL–Amiri, & M. J. Hassan. 2018. Effect of selenium fertilization on dry weight , concentration , and selenium uptake in shoot of maize (Zea mays L .) growing in Iraqi calcareous soils. Merit Research Journal of Agricultural Science and Soil Sciences 6:001–006.
AOAC. 2005. Official Method of Analysis of the AOAC International. 18th Ed. Assoc. Off. Anal. Chem., Arlington.
Astuti, A., A. Agus, & S. P. S. Budi. 2012. The effect of high quality feed supplement addition on the nutrient consumption and digestibility of early lactating dairy cow. Bulletin of Animal Science 33:81–87. https://doi.org/10.21059/buletinpeternak.v33i2.120
Boghdady, M. S., E. M. Desoky, S. N. Azoz, & D. M. A. Nassar. 2017. Effect of selenium on growth, physiological aspects and productivity of faba bean (Vicia faba L.). Egyptian Journal of Agronomy 39:83–97. https://doi.org/10.21608/agro.2017.662.1058
Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin Chem. 8:130–132. https://doi.org/10.1093/clinchem/8.2.130
Chilimba, A. D. C., S. D. Young, & E. J. M. Joy. 2014. Agronomic biofortification of maize, soybean and groundnut with selenium in intercropping and sole cropping systems. Afr. J. Agric. Res . 9:3620–3626.
Cranston, L. M., P. R. Kenyon, S. T. Morris, N. Lopez-Villalobos, & P. D. Kemp. 2016. Morphological and physiological responses of plantain (Plantago lanceolata) and Chicory (Cichorium intybus) to water stress and defoliation frequency. J. Agron. Crop. Sci. 202:3–24. https://doi.org/10.1111/jac.12129
Das, S., N. Vasudeva, & S. Sharma. 2016. Cichorium intybus : A concise report on its ethnomedicinal, botanical, and phytopharmacological aspects. Drug Development and Therapeutics 7:1–12. https://doi.org/10.4103/2394-6555.180157
De Temmerman, L., N. Waegeneers, C. Thiry, G. Du Laing, F. Tack, & A. Ruttens. 2014. Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci. Total Environ. 468–469:77–82. https://doi.org/10.1016/j.scitotenv.2013.08.016
Delgado-Moreno, L., A. Peña, & G. Almenbdros. 2010. Contribution by different organic fractions to triazines sorption in Calcaric Regosol amended with raw and biotransformed olive cake. J. Hazard. Mater. 174:93–99. https://doi.org/10.1016/j.jhazmat.2009.09.021
Dhamala, N. R., J. Rasmussen, G. Carlsson, K. Søegaard, & J. Eriksen. 2017. N transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway. Plant Soil 413:217–230. https://doi.org/10.1007/s11104-016-3088-6
El Mehdawi, A. F. & E. A. H. Pilon-Smits. 2012. Ecological aspects of plant selenium hyperaccumulation. Plant Biol. 14:1–10. https://doi.org/10.1111/j.1438-8677.2011.00535.x
Favorito, J. E., P. R. Grossl, T. Z. Davis, M. J. Eick, & N. Hankes. 2021. Soil-plant-animal relationships and geochemistry of selenium in the Western Phosphate Resource Area (United States): A review. Chemosphere 266:1–18. https://doi.org/10.1016/j.chemosphere.2020.128959
Feng, R., C. Wei, & S. Tu. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87: 58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002
Flueck, W. T. 2015. Osteopathology and selenium deficiency co-occurring in a population of endangered Patagonian huemul (Hippocamelus bisulcus). BMC Res. Notes. 8:330. https://doi.org/10.1186/s13104-015-1291-9
Germ, M., N. Kacjan-marši, A. Kroflič, A. Jerše, V. Stibilj, & A. Golob. 2020. Significant accumulation of iodine and selenium in Chicory (Cichorium intybus L. var. foliosum Hegi) leaves after foliar spraying. Plants 9:1–10. https://doi.org/10.3390/plants9121766
Gupta, M. & S. Gupta. 2017. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant. Sci. 7: 1–14. https://doi.org/10.3389/fpls.2016.02074
Hardjowigeno, S. 2007. Land Suitability Evaluation and Land Use Design. Gadjah Mada University Press.
Hawrylak-Nowak, B., S. Dresler, K. Rubinowska, R. Matraszek-Gawron, W. Woch, & M. Hasanuzzaman. 2018. Selenium biofortification enhances the growth and alters the physiological response of lamb’s lettuce grown under high temperature stress. Plant. Physiol. Biochem. 127: 446–456. https://doi.org/10.1016/j.plaphy.2018.04.018
Huo, B., T. Wu, C. Song, & X. Shen. 2020. Effects of selenium deficiency in the environment on antioxidant systems of wumen semi-fine wool sheep. Biol. Trace Elem. Res. 194:152–158. https://doi.org/10.1007/s12011-019-01751-1
Kolbert, Z., Á. Molnár, G. Feigl, & D. Van Hoewyk. 2019. Plant selenium toxicity: Proteome in the crosshairs. J. Plant Physiol. 232:291–300. https://doi.org/10.1016/j.jplph.2018.11.003
Kung, L., R. D. Shaver, R. J. Grant, & R. J. Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101:4020–4033. https://doi.org/10.3168/jds.2017-13909
Lee, J. M., N. R. Hemmingson, E. M. K. Minnee, & C. E. F. Clark. 2015. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics and plant density. Crop Pasture Sci. 66:168–183. https://doi.org/10.1071/CP14181
Mangiapane, E., A. Pessione, & E. Pessione. 2014. Selenium and selenoproteins: an overview on different biological systems. Curr. Protein Pept. Sci. 15:598–607. https://doi.org/10.2174/1389203715666140608151134
Mangwe, M. C., R. H. Bryant, C. A. Moreno, T. M. R. Maxwell, & P. Gregorini. 2020. Functional traits, morphology, and herbage production of vernalised and non-vernalised Chicory cv. Choice (Cichorium intybus L.) in response to defoliation frequency and height. Plants 9:1–18. https://doi.org/10.3390/plants9050611
Martí, E., J. Sierra, J. Cáliz, G. Montserrat, X. Vila, M. A. Garau, & R. Cruañas. 2011. Ecotoxicity of chlorophenolic compounds depending on soil characteristics. Sci. Total Environ. 409:2707–2716. https://doi.org/10.1016/j.scitotenv.2011.03.005
Mayulu, H., S. Sunarso, M. Christiyanto, & F. Ballo. 2013. Intake and digestibility of cattle’s ration on complete feed based-on fermented ammonization rice straw with different protein level. Int. J. Sci. Eng. 4:86–91. https://doi.org/10.12777/ijse.4.2.86-91
Mazej, D., J. Osvald, & V. Stibilj. 2008. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem. 107:75–83. https://doi.org/10.1016/j.foodchem.2007.07.036
McDonal, P., R. A. Edward, & C. A. Morgan. 2002. Animal Nutrition 7th Edition. Harlow.
Mechora, Š., D. P. Torres, R. E. Bruns, M. Škof, & K. Ugrinović. 2017. Effect of selenium treated broccoli on herbivory and oviposition preferences of Delia radicum and Phyllotreta spp. Sci. Hortic. 225:445–453. https://doi.org/10.1016/j.scienta.2017.07.032
Mehdi, Y., J. L. Hornick, L. Istasse, & I. Dufrasne. 2013. Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311. https://doi.org/10.3390/molecules18033292
Meuriot, F., A. Morvan-Bertrand, N. Noiraud-Romy, M. L. Decau, A. J. Escobar-Gutiérrez, F. Gastal, & M. P. Prud’Homme. 2018. Short-term effects of defoliation intensity on sugar remobilization and N fluxes in ryegrass. J. Exp. Bot. 69:3975–3986. https://doi.org/10.1093/jxb/ery211
Mudhita, I. K., N. Umami, S. P. S. Budhi, E. Baliarti, C. T. Noviandi, Kustono, I. G. S. Budisatria, & J. Wattimena. 2016. Effect of Bali cattle urine on legume cover crop puero (Pueraria javanica) productivity on an east borneo oil palm plantation. Pak. J. Nutr. 15:406–411. https://doi.org/10.3923/pjn.2016.406.411
Nahm, K. H. 1992. Practical Guide to Feed. Forage and Water Analysis. Yoo Han Publisher.
Nasrollahi, S., M. Imani, & Q. Zebeli. 2015. A meta-analysis and meta-regression of the effect of forage particle size, level, source, and preservation method on feed intake, nutrient digestibility, and performance in dairy cows. J. Dairy Sci. 98:8926–8939. https://doi.org/10.3168/jds.2015-9681
Newman, R., N. Waterland, Y. Moon, & J. C. Tou. 2019. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention – a review. Plant Foods for Hum. Nutr. 74:449–460. https://doi.org/10.1007/s11130-019-00769-z
Nwafor, I. C., K. Shale, & M. C. Achilonu. 2017. Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. The Scientific World Journal 2017: 1-11. https://doi.org/10.1155/2017/7343928
Peña-Espinoza, M., A. H. Valente, L. Bornancin, H. T. Simonsen, S. M. Thamsborg, A. R. Williams, & R. López-Muñoz. 2020. Anthelmintic and metabolomic analyses of chicory (Cichorium intybus) identify an industrial by-product with potent in vitro antinematodal activity. J. Vet. Parasitol. 280:1–11. https://doi.org/10.1016/j.vetpar.2020.109088
Peña-Espinoza, M., A. Valente, S. M. Thamsborg, H. T. Simonsen, U. Boas, H. L. Enemark, R. Lopez-Munoz, & A. Williams. 2018. Antiparasitic activity of Chicory (Cichorium intybus) and the natural bioactive compounds in livestock: a review. Parasites Vectors 11:1–14. https://doi.org/10.1186/s13071-018-3012-4
Saffaryazdi, A., M. Lahouti, A. Ganjeali, & H. Bayat. 2012. Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) Plants. Not. Sci. Biol. 4:95–100. https://doi.org/10.15835/nsb448029
Schiavon, M., L. W. Lima, Y. Jiang, & M. J. Hawkesford. 2017. Effects of selenium on plant metabolism and implications for crops and consumers. Selenium in Plants. 2019:257–275. https://doi.org/10.1007/978-3-319-56249-0_15
Száková, J., J. Tremlová, K. Pegová, J. Najmanová, & P. Tlustoš. 2015. Soil-to-plant transfer of native selenium for wild vegetation cover at selected locations of the Czech Republic. Environ. Monit. Assess. 187:1–9. https://doi.org/10.1007/s10661-015-4588-1
Thomas, R. 2004. Practical Guide to ICP-MS. Marcer Dekker Inc, New York. https://doi.org/10.1201/9780203027073
Tilley, J. M. A. & R. A. Terry. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Trippe III, R. C. & E. A. H. Pilon-Smits. 2021. Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. J. Hazard. Mater. 404:1-12. https://doi.org/10.1016/j.jhazmat.2020.124178
White, P. J., Bowen, H. C., P. Parmaguru, M. Fritz, W. P. Spracklen, R. E. Spiby, M. C. Meacham, A. Mead, M. Harriman, L. J. Trueman, B. M. Smith, B. Thomas, & M. R. Broadley. 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 55:1927–1937. https://doi.org/10.1093/jxb/erh192
White, P. J. 2016. Selenium accumulation by plants. Annals of Botany. 117:217–235.
Winkel, L. H. E., B. Vriens, G. D. Jones, L. S. Schneider, E. Pilon-Smits, & G. S. Bañuelos. 2015. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients 7:4199–4239. https://doi.org/10.3390/nu7064199
Zaini, N., N. Umami, C. Hanim, A. Astuti, & B. Suwignyo. 2021. The effect of harvest age on different regrowth on Chicory (Cichorium intybus L.) forage yield by intercropped with Pennisetum purpureum cv. Mott. Bulletin of Animal Science 45:103–108.

Authors

N. Umami
nafiatul.umami@ugm.ac.id (Primary Contact)
E. R. V. Rahayu
B. Suhartanto
A. Agus
M. M. Rahman
UmamiN., RahayuE. R. V., SuhartantoB., AgusA., & RahmanM. M. (2022). Selenium Application in Improving Chicory (Cichorium intybus) Productivity and Quality. Tropical Animal Science Journal, 45(3), 337-347. https://doi.org/10.5398/tasj.2022.45.3.337

Article Details