Improving the Rumen Molar Proportion of Glucogenic Volatile Fatty Acids with the Inclusion of Siam Weed (Chromolaena odorata) Meal in Pelleted Diet of Fattened Cattle

M. L. Mullik, T. O. D. Dato, Y. M. Mulik, G. Oematan


The objective of this metabolism study was to evaluate the efficacy of Siam weed (Chromolaena odorata) meal in pelleted diets for fattened cattle. Four 2-year-old Bali steers were assigned to four dietary treatments using a 4x4 Latin square experimental design. The treatments were pellets containing chromolaena meal at 10% (10COM), 20% (20COM), 30% (30COM), or 40% (40COM). The pellet was given at 2% liveweight (LW), and kume (Sorghum plumosum var. Timorense) grass hay was offered ad libitum. The diets were isonitrogenous (20%) and energy (11.5 MJ ME/kg DM). Dietary intake, digestibility, and rumen fermentation were the variables measured. The results showed that increasing chromolaena meal to 40% substantially decreased the nutrient intake. Dry matter intake decreased from 2.5% LW in the 10COM to 2.19% LW in the 40COM. Likewise, crude protein intake decreased from 749 g/d (10COM) to 661 g/d (40COM). On the contrary, digestibility, rumen pH, ammonia concentration (116–125 mg/dL), and volatile fatty acids were not affected. It might be concluded that chromolaena can be used as a protein source for ruminants, but at high levels of inclusion (40%) tends to reduce intake.


Abubakar, M. A., A. C. Etonihu, P. E. Kigbu, J. E. Owuna, & S. I. Audu. 2020. Phytochemical and antimicrobial analyses of leaf extracts of cerathoteca sesamoides and Chromolaena odorata. International Journal Research GRANTHAALAYAH 8:65-74.
Akintunde, A. O., L. C. Ndubuisi-Ogbona, O. A. Ajayi, C. Chioma, W. A. Jimoh, & O. J. Afodu. 2021. Utilization of Chromolaena odorata leaf meal as a supplement in broiler chickens’ diet. Nigerian Journal Animal Science 23:189-198.
Alemu, A. W., A. Romero-Perez, R. C. Araujo, & K. A. Beauchemin. 2019. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals 9:21.
Almeida, A. K., R. S. Hegarty, & A. Cowie. 2021. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Anim. Nutr. 7:1219-1230.
AOAC. 2005. Official Methods of Analysis.17th ed. Assoc. of Official Analytical Chemist, Washington DC.
Apori, S. O., F. N. Odoi, & E. Ganyo. 2001. Intake and digestibility of organic matter and nitrogen in Chromolaena odorata leaf meal-based diets by sheep. Ghana Journal Agricultural Science 34:11-14.
Aro, S. O., I. B. Osho, V. A. Aletor, & O. O. Tewe. 2009. Chromolaena odorata in livestock nutrition. J. Med. Plant Res. 3:1253-1257.
Arowolo, M. A., X. M. Zhang, M. Wang, R. Wang, J. N. Wen, L. Z. Hao, J. H. He, W. J. Shen, Z. Y. Ma, & Z. L. Tan. 2022. Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique. J. Dairy Sci. 105:231–241.
Bach, A., M. Baudon, G. Elcoso, J. Viejo, & A. Courillon. 2023. Effects on rumen pH and feed intake of a dietary concentrate challenge in cows fed rations containing pH modulators with different neutralizing capacity. J. Dairy Sci. 106:4580-4598.
Berça, A. S., L. O. Tedeschi, A. da Silva Cardoso, & R. A. Reis. 2023. Meta-analysis of the relationship between dietary condensed tannins and methane emissions by cattle. Anim. Feed Sci. Technol. 298:115564.
Bira, G. A. 2015. Determination of the ideal level of Chromolaena odorata in concentrate for fattening cattle based on consumption rate, digestibility, rumen dynamics, and blood profiles. Thesis. Department of Animal Science, Universitas Nusa Cendana, Indonesia.
Fasuyi, A. O., K. S. O. Fajemilehin, & S. O. Oro. 2005. Nutritional potentials of Siam weed (Chromolaena odorata) leaf meal on laying hens: Biochemical and haematological implications. Pak. J. Nutr. 4:336-341.
Foote, A. P. 2022. Technical Note: Analysis of volatile fatty acids in rumen fluid by gas chromatography mass spectrometry using a dimethyl carbonate extraction. J. Anim. Sci. 100:skac207.
Ganguly, R. K., Md. A. Al-Helal, & S. K. Chakraborty. 2022. Management of invasive weed Chromolaena odorata (Siam weed) through vermicomposting: An eco-approach utilizing organic biomass valorization. Environ. Technol. Innov. 28:102952.
Guerreiro, O., A. E. Francisco, S. P. Alves, D. Soldado, L. Cachucho, A. U. Chimenos,  F. Duarte,  J. Santos-Silva, R. J. B. Bessa, & E. Jerónimo. 2022. Inclusion of the aerial part and condensed tannin extract from Cistus ladanifer  L. in lamb diets – Effects on rumen microbial community and fatty acid profile. Anim. Feed Sci. Technol. 291:115398.
Hall, M. B., T. D. Nennich, P. H. Doane, & G. E. Brink. 2015. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo. J. Dairy Sci. 98:3988-3999.
Humer, E., J. R. Aschenbach, V. Neubauer, I. Kröger, R. Khiasord, W. Baumgartner, & Q. Zebeli. 2017. Signals for identifying cows at risk of subacute ruminal acidosis in dairy veterinary practice. J. Anim. Physiol. Anim. Nutr. 102:380–392.
IBM. 2017. SPSS Statistics Version 25. International Business Machines Corporation. Armonk NY, USA.
Jayanegara A, F. Leiber, & M. Kreuzer. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Anim. Physiol. Anim. Nut. 96:365e75.
Jiwuba, P. C., I. P. Ogbuewu, & K. Nwachukwuguru. 2018. Performance and economy of production of broilers fed Siam weed (Chromolaena odorata) leaf meal (SWLM). Trop. Anim. Health Prod. 50:1305–1311.
Kato-Noguchi, H. & M. Kato. 2023. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 12:521.
Kitkas, G. C, G. E. Valergakis, M. Kritsepi-Konstantinou, A. I. Gelasakis, P. D. Katsoulos, E. Kalaitzakis, & N. K. Panousis. 2022. Association between ruminal pH and rumen fatty acids concentrations of Holstein cows during the first half of lactation. Ruminants 2:382–389.
Lakamp, A. D., R. L. Weaber, J. M. Bormann, & M. M. Rolf. 2022. Relationships between enteric methane production and economically important traits in beef cattle. Livest. Sci. 265:105102.
Lam, S., S. Miller, J. Munro, T. Caldwell, J. Cant, M. Steele, & M. Montanholi. 2015. Ruminal pH and Temperature. The Elora Beef Gaezette, 2015 May 1st, Factsheet 4 Issu1.
Lartey, K. A., Dan-Ju, Qiao-Hui, Zhang, Chao-Qun, S., F. Yang, L. Hong-Ying, & Ch. Jin-Jun. 2020. Chromolaena odorata as a potential feed additive bioresource to alleviate heat stress in chickens in the humid tropics. Worlds Poult. Sci. J. 76:119-133.
Lopes, A. S. M., J. S. de Oliveira, G. F. L. Cruz, D.S. Vieira, F. N. S. Santos, M. L. P. Lemos, J. K. Pinheiro, L. S. de Sousa, C. J. B. de Oliveira, & E. M. Santos. 2023. Effects of non-protein nitrogen on buffel grass fiber and ruminal bacterial composition in sheep. Livest. Sci. 272:105237.
Martins, L. F., S. F. Cueva, C. F. A. Lage, M. Ramin, T. Silvestre, J. Tricarico, & A. N. Hristov. 2024. A meta-analysis of methane-mitigation potential of feed additives evaluated in vitro. J. Dairy Sci. 107:288-300.
Miller, M. D., J. S. Lanier, S. K. Kvidera, H. M. Dann, C. S. Ballard, & R. J. Grant. 2020. Evaluation of source of corn silage and trace minerals on rumen characteristics and passage rate of Holstein cows. J. Dairy Sci. 103:8864–8879.
Min, B. R., S. Solaiman, H. M. Waldrip, D. Parker, R. W. Todd, & D. Brauer. 2020. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutrition 6:231-246.
Morgavi, D. P., G. Cantalapiedra-Hijar, E. C. Martin, P. Noziere, M. Popova, I. Ortigues-Marty, R. Muñoz-Tamayo, & E. M. Ungerfeld. 2023. Review: Reducing enteric methane emissions improves energy metabolism in livestock: Is the tenet right? Animal 17:100830.
Moss, A. R., J-P. Jouany, & J. Noewbold. 2000. Methane production by ruminants: Its contribution to global warming. Annales De Zootechnie 49:231–253.
Mulik, Y. M., M. Ridla, I. Prihantoro, & M. L. Mullik. 2016. Anaerobic fermentation effectively reduces concentration of total tannins in Siam Weed (Chromolaenan odorata). Jurnal Ilmu Ternak Veteriner 21:19-21.
Newbold, C. J. & E. Ramos-Morales. 2020. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal 14:s78-s86.
Ngozi, I. M., I. C. Jude, & I. C. Catherine. 2009. Chemical profile of Chromolaena odorata L. (King and Robinson) leaves. Pak. J. Nutr. 8:521-524.
NRC. 2016. Nutrient Requirement of Beef Cattle. 8th Revised Edition. National Academy Press.
Oematan, G., E. Hartati, M. L. Mullik, & N. Taratiba. 2020. Bio- the nutritional values of Chromolena odorata utilization as Bali cattle feed source. Int. J. Sci. Res. 9:1524-1533.
Oematan, G. 2020. Optimation of the Rumen Biofermentation and Growth of Bali Cattle using Chromolaena odorata Supplemented with Hydroxy Metheonine Analogue and Unsaturated Fatty Acid. PhD Thesis. Universitas Nusa Cendana, Indonesia.
OISC. 2018. Survey and Control of Chromolaena odorata in the Kahuku Training Area, O‘ahu, Hawai‘i Annual Progress Report October 1, 2017—March 31.
Olawale, F., K. Olofinsan, & O. Iwaloye. 2022. Biological activities of Chromolaena odorata: A mechanistic review. S. Afr. J. Bot. 144:44-57.
Olijhoek, D. W., A. L. F. Hellwing, S. J. Noel, P. Lund, M. Larsen, M. R. Weisbjerg, & C. F. Børsting. 2022. Feeding up to 91% concentrate to Holstein and Jersey dairy cows: Effects on enteric methane emission, rumen fermentation and bacterial community, digestibility, production, and feeding behavior. J. Dairy Sci. 105:9523–9541.
Patra, A. K. & Z. Yu. 2016. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresource Technol. 148:352-360.
Ridla, M., Y. M. Mulik, I. Prihantoro, & M. L. Mullik. 2016. Penurunan total tanin silase semak bunga putih (Chromolaena odorata) dengan aditif tepung putak (Corypha elata Robx) dan isi rumen sapi. Buletin Peternakan 40:165-169.
Rivera-Ferre, M. G., F. López-i-Gelats, M. Howden, P. Smith, J. F. Morton, & M. Herrero. 2016. Re-framing the climate change debate in the livestock sector: mitigation and adaptation options. Wiley Interdiscip. Rev. Clim Change 7:869-892.
SCA. 2007. Feeding Standards for Australian Livestock. Standing Committee on Ruminants. CSIRO, Australia.
Smith, F. E. & T. A. Murphy. 1993. Analysis of Rumen Ammonia & Blood Urea Nitrogen. Univ. Nebraska, Lincoln, NE. [March 10, 2023].
Tiamiyu, A. M. & O. A. Okunlade. 2020. Benefits and detriments of Siam weed (Chromolaena odorata): A review. Biochem. Biotechnol. Res. 8:21-28.
Thompson, J. P., S. Stergiadis, O. C. Carballo, T. Yan, F. Lively, S. Huws, K. Theodorido, & J. Gilliand. 2023. O88 Effect of grazing cattle on willow silvopastoral systems on animal performance and methane production. Animal Science Proceedings 14:599-600.
Umar, M., M. Arifin, & A. Purnomoadi. 2011. Ruminal condition between madura cattle and ongole crossbred cattle raised under intensive feeding. J. Indones. Trop. Anim. Agric. 36:213-218.
Vasta, V. & R. J. B. Bessa. 2012. Manipulating Ruminal Biohydrogenation by the Use of Plants Bioactive Compounds. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht.
Yakubu, M. T. 2012. Effect of a 60-day oral gavage of a crude alkaloid extract from Chromolaena odorata leaves on hormonal and spermatogenic indices of male rats. J. Adrol. 33:1199-1207.
Yang, H., C. Wei, G. Y. Zhao, Z. W. Xu, & S. X. Lin. 2017. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. J. Anim. Physiol. Anim. Nutr. 101:302-310.


M. L. Mullik (Primary Contact)
T. O. D. Dato
Y. M. Mulik
G. Oematan
Author Biographies

T. O. D. Dato, Study Program of Animal Husbandry, Faculty of Animal Husbandry, Marine and Fisheries, Universitas Nusa Cendana



Y. M. Mulik, Department of Animal Husbandry, Politeknik Pertanian Negeri Kupang



G. Oematan, Study Program of Animal Husbandry, Faculty of Animal Husbandry, Marine and Fisheries, Universitas Nusa Cendana



MullikM. L., DatoT. O. D., MulikY. M., & OematanG. (2024). Improving the Rumen Molar Proportion of Glucogenic Volatile Fatty Acids with the Inclusion of Siam Weed (Chromolaena odorata) Meal in Pelleted Diet of Fattened Cattle. Tropical Animal Science Journal, 47(1), 97-103.

Article Details