Impact of ß-Glucan with Non-Glucan Biomaterials on Growth Performance, Carcass Characteristics, and Viable Count of Lactobacilli in Broiler Chicks

H. M. Hashaam, S. Naveed, S. Rehman, M. Zeeshan, A. Rahman, W. P. Lokapirnasari, M. A. Hussain, R. Begum, M. Jamal, A. B. Yulianto

Abstract

Probiotics, prebiotics, and immunomodulators like β-glucan have become popular feed additives. Thus, this study examined the effects of a β-glucan product fortified with dietary biomaterials (fats, proteins, and minerals) on broiler chicks’ growth, carcass features, immunological response, white blood cell (WBC) count, and viable count (number of living cells) of lactobacilli. Day-old Ross-308 (n=250) were randomly assigned to 1 of 5 dietary treatments; A= basal diet, B= basal diet + 40 mg/kg of avilamycin, C= basal diet + 250 g/ton β-glucan product, D= basal diet + 500 g/ton β-glucan product, and E= basal diet + 750 g/ton β-glucan product. The starter diet was administered from days 1 to 14, the grower diet from days 15 to 21, and the finisher diet from days 22 to 35. Each treatment had 5 repetitions of 10 birds. On days 7 and 20, all birds were eye-drop inoculated against the Newcastle disease (ND) vaccine. Three chickens from each replication of all treatments were slaughtered on day 35 to examine carcass features and collect ileal digesta. White blood cell and viable lactobacilli counts at the end of the trial showed the effect of β-glucan supplementation. Throughout the trial, β-glucan administration did not increase average daily weight gain. The treatments did not change WBC or viable count; however, lactobacilli count increased (p≤0.05) in treatment group E. Treatment E increased (p≤0.05) ND-vaccination antibody-titers but did not affect immunological organ development. Treatment diet E (base diet +750 mg/t β-glucan product) improved broiler immunity and gut microbiota. In conclusion, the addition of β-glucan to broiler feed enhanced the beneficial gut flora, particularly Lactobacilli and immune response, and may serve as an alternative to antibiotics.

References

Ali, Z., I. Hussain, M. Faisal, A. M. Shoukry, S. Gani, & I. Ahmad. 2019. A framework to identify homogeneous drought characterization regions. Theor. Appl. Climatol. 137:3161-3172. https://doi.org/10.1007/s00704-019-02797-w
Allen, R. H. & S. P. Stabler. 2008. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am. J. Clin. Nutr. 87:1324–1335. https://doi.org/10.1093/ajcn/87.5.1324
Ahiwe, E. U., T. T. Dos Santos, H. Graham, & P. A. Iji. 2021. Can probiotic or prebiotic yeast (Saccharomyces cerevisiae) serve as alternatives to in-feed antibiotics for healthy or disease-challenged broiler chickens?: a review. J. Appl. Poult. Res. 30:100164. https://doi.org/10.1016/j.japr.2021.100164
Amer, S. A., G. A. Attia, A. A. Aljahmany, A. K. Mohamed, A. A. Ali, A. Goud, G. N. Alagmy, H. M. Megahed, T. Saber, & M. Farahat. 2022. Effect of 1, 3-beta glucans dietary addition on the growth, intestinal histology, blood biochemical parameters, immune response, and immune expression of CD3 and CD20 in broiler chickens. Animals 12:3197. https://doi.org/10.3390/ani12223197
Bacic, A., G. B. Fincher, & B. A Stone. 2009. Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides. 1st Edition, Academic Press, Elsevier. https://doi.org/10.1016/B978-0-12-373971-1.X0001-5
Bader, S., S. Gerbig, B. Spengler, A. Schwiertz, G. Breves, & M. Diener. 2019. Robustness of the non-neuronal cholinergic system in rat large intestine against luminal challenges. Pflugers Arch. 471:605–618. https://doi.org/10.1007/s00424-018-2236-7
Baurhoo, B., P. R. Ferket, & X. Zhao. 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88:2262–2272. https://doi.org/10.3382/ps.2008-00562
Biggs, P. & C. M. Parsons. 2008. The effects of several organic acids on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poult. Sci. 87:2581–2589. https://doi.org/10.3382/ps.2008-00080
Bortoluzzi, C., J. G. M. Barbosa, R. Pereira, N. S. Fagundes, J. M. Rafael, & J. F. M. Menten. 2018. Autolyzed yeast (Saccharomyces cerevisiae) supplementation improves performance while modulating the intestinal immune-system and microbiology of broiler chickens. Front. Sustain. Food Syst. 2:85. https://doi.org/10.3389/fsufs.2018.00085
Castanon, J. I. 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 86:2466–2471. https://doi.org/10.3382/ps.2007-00249
Cho, J. H., Z. F. Zhang, & I. H. Kim. 2013. Effects of single or combined dietary supplementation of β-glucan and kefir on growth performance, blood characteristics and meat quality in broilers. Br. Poult. Sci. 54:216–221. https://doi.org/10.1080/00071668.2013.777691
Cosby, D. E., N. A. Cox, M. A. Harrison, J. L. Wilson, R. J. Buhr, & P. J. Fedorka-Cray. 2015. Salmonella and antimicrobial resistance in broilers: A review. J. Appl. Poult. Res. 24:408-426. https://doi.org/10.3382/japr/pfv038
Cox, C. M., L. H. Sumners, S. Kim, A. P. McElroy, M. R. Bedford, & R. A. Dalloul. 2010. Immune responses to dietary beta-glucan in broiler chicks during an Eimeria challenge. Poult. Sci. 89:2597–2607. https://doi.org/10.3382/ps.2010-00987
Darwish, W. S., E. A. Eldaly, M. T. El-Abbasy, Y. Ikenaka, S. Nakayama, & M. Ishizuka. 2013. Antibiotic residues in food: The African scenario. Jpn. J. Vet. Res. 61:S13–S22.
Ding, B., J. Zheng, X. Wang, L. Zhang, D. Sun, Q. Xing, A. Pirone, & B. Fronte. 2019. Effects of dietary yeast beta-1,3-1,6-glucan on growth performance, intestinal morphology and chosen immunity parameters changes in Haidong chicks. Asian-Australas. J. Anim. Sci. 32:1558–1564. https://doi.org/10.5713/ajas.18.0962
Divya, M., N. Gopi, A. Iswarya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, T. N. Almanaa, & B. Vaseeharan. 2020. β-glucan extracted from eukaryotic single-celled microorganism Saccharomyces cerevisiae: Dietary supplementation and enhanced ammonia stress tolerance on Oreochromis mossambicus. Microbial Pathogenesis 139:103917. https://doi.org/10.1016/j.micpath.2019.103917
Gadde, U., W. H. Kim, S. T. Oh, & H. S. Lillehoj. 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Animal Health Research Reviews 18:26-45. https://doi.org/10.1017/S1466252316000207
Ghosh, T. K., S. Haldar, M. R. Bedford, N. Muthusami, & I. Samanta. 2012. Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: Effects on performance, intestinal histo-morphology and humoral immune responses. J. Anim. Physiol. Anim. Nutr. 96:275–284. https://doi.org/10.1111/j.1439-0396.2011.01155.x
Goh, T. W., H. J. Kim, K. Moon, C. S. Kim, & Y. Y. Kim. 2023. Effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, fecal microbiota, fecal score, and nutrient digestibility in weaning pigs. Anim. Biosci. 36:642–653. https://doi.org/10.5713/ab.22.0311
Haghshenas, M., H. Hosseini, K. Nayebzadeh, A. M. Khanghah, B. S. Kakesh, & R. K. Fonood. 2014. Production of prebiotic functional shrimp nuggets using ß-glucan and reduction of oil absorption by carboxymethyl cellulose: Impacts on sensory and physical properties. Journal Aquaculture Research Development 5:245-248. https://doi.org/10.4172/2155-9546.1000245
Haji, S., T. Ito, C. Guenther, M. Nakano, T. Shimizu, D. Mori, Y. Chiba, M. Tanaka, S. K. Mishra, J. A. Willment, G. D. Brown, M. Nagae, & S. Yamasaki. 2022. Human Dectin-1 is O-glycosylated and serves as a ligand for C-type lectin receptor CLEC-2. eLife 11:e83037. https://doi.org/10.7554/eLife.83037
Holanda, D. M., A. Yiannikouris, & S. W. Kim. 2020. Investigation of the efficacy of a postbiotic yeast cell wall-based blend on newly-weaned pigs under a dietary challenge of multiple mycotoxins with emphasis on deoxynivalenol. Toxins 12:504. https://doi.org/10.3390/toxins12080504
Horst, G., R. Levine, R. Chick, & C. Hofacre. 2019. Effects of beta-1,3-glucan (AletaTM) on vaccination response in broiler chickens. Poult. Sci. 98:1643–1647. https://doi.org/10.3382/ps/pey523
Kiarie, E. G., M. Mohammadigheisar, & H. Schulze. 2022. Effects of early feeding of enzymatically treated yeast on growth performance, organ weights, intestinal histomorphology, and ceca microbial metabolites in broiler chickens subjected to Eimeria challenge. Poult. Sci. 101:101967. https://doi.org/10.1016/j.psj.2022.101967
Kil, B. J., Y. J. Pyung, H. Park, J. W. Kang, C. H. Yun, & C. S. Huh. 2023. Probiotic potential of Saccharomyces cerevisiae GILA with alleviating intestinal inflammation in a dextran sulfate sodium induced colitis mouse model. Sci. Rep. 13:6687. https://doi.org/10.1038/s41598-023-33958-7
Maqsood, M. A., E. U. Khan, S. N. Qaisrani, M. A. Rashid, M. S. Shaheen, A. Nazir, H. Talib, & S. Ahmad. 2022. Interactive effect of amino acids balanced at ideal lysine ratio and exogenous protease supplemented to low CP diet on growth performance, carcass traits, gut morphology, and serum metabolites in broiler chicken. Trop. Anim. Health Prod. 54:186. https://doi.org/10.1007/s11250-022-03184-w
Moon, S. H., I. Lee, X. Feng, H. Y. Lee, J. Kim, & D. U. Ahn. 2016. Effect of dietary beta-glucan on the performance of broilers and the quality of broiler breast Meat. Asian-Australas. J. Anim. Sci. 29:384–389. https://doi.org/10.5713/ajas.15.0141
Murphy, P., F. D. Bello, J. O’Doherty, E. K. Arendt, T. Sweeney, & A. Coffey. 2013. Analysis of bacterial community shifts in the gastrointestinal tract of pigs fed diets supplemented with β-glucan from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae. Animal 7:1079–1087. https://doi.org/10.1017/S1751731113000165
Nakashima, A., K. Yamada, O. Iwata, R. Sugimoto, K. Atsuji, T. Ogawa, N. Ishibashi-Ohgo, & K. Suzuki. 2018. β-Glucan in foods and its physiological functions. J. Nutr. Sci. Vitaminol 64:8–17. https://doi.org/10.3177/jnsv.64.8
Ngunyangi, E. N., J. K. Tuitoek, M. K. Ambula, & A. M. Wachira. 2019. Evaluation of the antibiotic properties of probiotics and their efficacy on performance and immune response in broiler chicken. Int. J. Poult. Sci. 18:393-403. https://doi.org/10.3923/ijps.2019.393.403
Niu, X., Y. Ding, S. Chen, R. Gooneratne, & X. Ju. 2022. Effect of immune stress on growth performance and immune functions of livestock: mechanisms and prevention. Animals 12:909. https://doi.org/10.3390/ani12070909
Okrouhlá, M., J. Čítek, R. Švejstil, K. Zadinová, K. Pokorná, D. Urbanová, & R. Stupka. 2020. The effect of dietary Helianthus tuberosus L. on the populations of pig faecal bacteria and the prevalence of skatole. Animals 10:693. https://doi.org/10.3390/ani10040693
Rahimi, S., S. Kathariou, O. Fletcher, & J. L. Grimes. 2019. Effect of a direct-fed microbial and prebiotic on performance and intestinal histomorophology of turkey poults challenged with Salmonella and Campylobacter. Poult. Sci. 98:6572–6578. https://doi.org/10.3382/ps/pez436
Rayala R. V., V. R. Reddy, A. K. Panda, V.C. Preetam, & B. P. Reddy. 2017. Effect of dietary supplementation of antibiotic growth promoters vs synbiotics on growth performance, carcass characteristics and immune response of broiler chickens. Int. J. Curr. Res. 9:49718-49723.
Silveira, M. M., J. M. S. Martins, F. Litz, C. M. C. Carvalho, C. A. Moraes, M. C. A. Silva, & E. A. Fernandes. 2017. Effect of sorghum based nutritional programs on performance, carcass yield and composition of breast in broilers. Rev. Bras. Cienc. Avic. 19:43-50. https://doi.org/10.1590/1806-9061-2016-0253
Simon, K., M. B. Verwoolde, J. Zhang, H. Smidt, G. de V. Reilingh, B. Kemp, & A. Lammers. 2016. Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens.  Poult. Sci. 95:1543–1554. https://doi.org/10.3382/ps/pew088
Song, Q., Y. Wang, L. Huang, M. Shen, Y. Yu, Q. Yu, Y. Chen, & J. Xie. 2021. Review of the relationships among polysaccharides, gut microbiota, and human health. Food Res. Int. 140:109858. https://doi.org/10.1016/j.foodres.2020.109858
Tykałowski, B. & A. Koncicki. 2022. Effect of immunomodulation in Turkeys infected with haemorrhagic enteritis virus on the percentage of CD4+ and CD8α+ T lymphocyte subpopulations synthesising IFN-γ. J. Vet. Res. 66:537–547. https://doi.org/10.2478/jvetres-2022-0068
Zhang, Z. F., T. X. Zhou, X. Ao, & I. H. Kim. 2012. Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize–soybean meal-based diets. Livest. Sci. 150:419-424. https://doi.org/10.1016/j.livsci.2012.10.003
Zhou, T. X., J. H. Jung, Z. F. Zhang, & I. H. Kim. 2013. Effect of dietary β-glucan on growth performance, fecal microbial shedding and immunological responses after lipopolysaccharide challenge in weaned pigs. Anim. Feed Sci. Technol. 179:85-92. https://doi.org/10.1016/j.anifeedsci.2012.10.008

Authors

H. M. Hashaam
S. Naveed
S. Rehman
M. Zeeshan
A. Rahman
W. P. Lokapirnasari
widya-p-l@fkh.unair.ac.id (Primary Contact)
M. A. Hussain
R. Begum
M. Jamal
A. B. Yulianto
Author Biography

M. Jamal, Department of Microbiology, Abdul Wali Khan University Mardan

 

 

HashaamH. M., NaveedS., RehmanS., ZeeshanM., RahmanA., LokapirnasariW. P., HussainM. A., BegumR., JamalM., & YuliantoA. B. (2024). Impact of ß-Glucan with Non-Glucan Biomaterials on Growth Performance, Carcass Characteristics, and Viable Count of Lactobacilli in Broiler Chicks. Tropical Animal Science Journal, 47(1), 53-60. https://doi.org/10.5398/tasj.2024.47.1.53

Article Details