Comparison of Chemical Composition, In Vitro Digestibility, and Near Infrared Reflectance Spectroscopy in Estimating In Situ Rumen Degradable Protein of Tropical Foliage

Despal, Y. I. Yulianti, R. Zahera, I. Agustiyani, A. Rosmalia, I. M. Afnan, M. Zain, U. H. Tanuwiria


Tropical foliage is an alternative source for protein enrichment in the dairy ration. However, due to the expensive, laborious, and time-consuming data-gathering method, its degradability database for inclusion in ration formulation is still lacking. This study aims to estimate tropical foliage's in situ protein degradability (RDP) using chemical compositions, in vitro digestibilities, and near infrared reflectance spectroscopy (NIRS) methods. The study used one hundred ten tropical foliage samples and observed chemical composition, in vitro dry and organic matter digestibility, and in situ degradation characteristics variables. NIRS spectra were collected to calibrate and validate the in situ degradation characteristics. Correlations were made prior to regression analysis. The results showed that tropical foliage varied in ash (3.02%-18.3%), crude protein (CP) (11.6%-30.7%), crude fiber (CF) (10.2%-29.8%), neutral detergent fiber (NDF) (31.0%-58.2%), acid detergent fiber (ADF) (18.7%-44.1%), dry matter digestibility (DMD) (23.9%-73.2%), organic matter digestibility (OMD) (25.6%-73.9%), and in situ RDP (21.0%-75.4%). The foliage was highly degraded (RDP > 60%) except for Calliandra calothyrsus (59%). In situ RDP significantly correlated with ash, CP, CF, DMD, and OMD with coefficient correlations (r) of 0.43, 0.60, -0.33, 0.74, and 0.76, respectively. Estimation of RDP using chemical composition and in vitro digestibility followed the equation: RDP (%)= 0.69 + 2.122 CP (%) with R²= 0.41 (p<0.01) and RDP (%)= 0.162 ash + 1.270 CP -0.104 CF + 0.489 IVOMD, with R²= 0.68, p<0.01). Calibration of NIRS using in situ RDP resulted in a regression coefficient (R²) of 0.78. It is concluded that RDP tropical foliage can be estimated more accurately using NIRS compared to in vitro digestibility and chemical composition.


Agustiyani, I., Despal, L. A. Sari, R. Chandra, R. Zahera, & I. G. Permana. 2021. Comparison between single and mixed-species NIRS databases’ accuracy of dairy fiber feed value detection. IOP Conf. Ser. Earth Environ. Sci. 667:012103.
Alomar, D., R. Fuchslocher, & M. De Pablo. 2003. Effect of preparation method on composition and NIR spectra of forage samples. Anim. Feed Sci. Technol. 107:191–200.
Anzhany, D., T. Toharmat, & Despal. 2022. Ration to produce milk high in conjugated linoleic acid (CLA) at smallholder dairy farm : An in vitro reconstruction. Am. J. Anim. Vet. Sci. 17:130–138.
AOAC. 2015. Official Methods of Analysis of AOAC International. 20th ed. Arlington: Assoc. Off. Anal. Chem.
AOCS. 2005. Official Methods and Recommended Practices of the AOCS. 7th ed. Urbanda: The American Oil Chemists’ Society.
Belanche, A., M. R. Weisbjerg, G. G. Allison, C. J. Newbold, & J. M. Moorby. 2013. Estimation of feed crude protein concentration and rumen degradability by Fourier-transform infrared spectroscopy. J. Dairy Sci. 96:7867–7880.
Castro-Montoya, J., R. Gownipuram, M. Mendoza, N. Solano, F. López, U. Dickhöfer, & E. E. Corea. 2019. Effects of feeding tropical forage legumes on nutrients digestibility, nitrogen partitioning and performance of crossbred milking cows. Anim. Feed Sci. Technol. 247:32–40.
Cornejo-Ramírez, Y. I., O. Martínez-Cruz, C. L. Del Toro-Sánchez, F. J. Wong-Corral, J. Borboa-Flores, & F. J. Cinco-Moroyoqui. 2018. The structural characteristics of starches and their functional properties. CYTA J. Food 16:1003–1017.
Despal. 2005. Nutritional Properties of Urea treated Cocoa Pod for Ruminant. 1st Ed. Cuvilier Verlag, Goettingen. Pp. 95.
Despal. 2010. Kemampuan komposisi kimia dan kecernaan in vitro dalam mengestimasi kecernaan in vivo. Med. Pet. 23:84–88.
Despal, Mubarok, M. Ridla, I. G. Permana, T. Toharmat. 2017. Substitution of concentrate by ramie (Boehmeria nivea) leaves hay or silage on digestibility of jawarandu goat ration. Pak. J. Nutr. 16:435–443.
Despal, L. A. Sari, R. Chandra, R. Zahera, I. G. Permana, & L. Abdullah. 2020. Prediction accuracy improvement of Indonesian dairy cattle fiber feed compositions using near-infrared reflectance spectroscopy local database. Trop. Anim. Sci. J. 43:263–269.
Despal, D. Anzhany, I. G. Permana, T. Toharmat, R. Zahera, N. Rofiah, N. Nuraina, & A. N. Hamidah. 2021a. Estimation of milk fatty acids health index as milk value added determinant using FT-NIRS. Am. J. Anim. Vet. Sci. 16:335–344.
Despal, L. J. Andini, E. Nugraha, & R. Zahera. 2021b. Regional variation accuracy detection of natural grass multi-species as dairy cattle forage using FT-NIRS. Int. J. Dairy Sci. 16:153–161.
Despal, L. A. Sari, I. G. Permana, R. Zahera, & D. Anzhany. 2021c. Fibre feeds impact on milk fatty acids profiles produced by smallholder dairy farmers. Int. J. Dairy Sci. 16:98–107.
Despal, D. T. P Manik, D. Evvyernie, & R. Zahera. 2022a. The accuracy of several in vitro methods in estimating in vivo digestibility of the tropical dairy ration. IOP Conf. Ser. Earth Environ. Sci. 951:012012.
Despal, O. F. Alifianty, A. P. Pratama, F. Febrianti, D. Evvyernie, I. Wijayanti, N. Nuraina, I. Agustiyani, & A. Rosmalia. 2022b. In situ degradation of dairy cattle feedstuffs using reusable local nylon fabric bags. Vet. World. 15:2234–2243.
Flis, S. 2005. Effects of parity and supply of rumen-degraded and undegraded protein on production and nitrogen balance in Holsteins. J. Dairy Sci. 88:2096–2106.
Hsu, H., A. Mcneil, E. Okine, G. Mathison, & R. Soofi-Siawash. 1998. Near infrared spectroscopy for measuring in situ degradability in barley forages. J. Near Infrared Spectrosc. 6:129–143.
Ikhwanti, A., A. Jayanegara, I. G. Permana, W. W. Wardani, Y. Retnani, A. A. Samsudin. 2020. Sugar, acid soluble polysaccharide, and total phenolic contents in tropical legumes and their relationships with in vitro nutrient fermentability. Trop. Anim. Sci. J. 43:331–338.
Indah, A. S., I. G. Permana, & Despal. 2020. Determination dry matter digestibility of tropical forage using nutrient compisition. IOP Conf. Ser. Earth Environ. Sci. 484:012113.
Jayanegara, A., A. Yaman, & L. Khotijah. 2019. Reduction of proteolysis of high protein silage from Moringa and Indigofera leaves by addition of tannin extract. Vet. World. 12:211-217.
Kakengi, A. M. V. 2005. Can Moringa oleifera be used as a protein supplement for ruminants? Asian-Australas. J. Anim. Sci. 18:42–47.
Lascano, G. J., L. E. Koch, & A. J. Heinrichs. 2016. Precision-feeding dairy heifers a high rumen-degradable protein diet with different proportions of dietary fiber and forage-to-concentrate ratios. J. Dairy Sci. 99:7175–7190.
McAllister, T. A., H. D. Bae, G. A. Jones, K. J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004–3018.
Oktavianti, B. P., Despal, T. Toharmat, N. Rofiah, & R. Zahera. 2022. Near-infrared reflectance spectroscopy (NIRS) detection to differentiate morning and afternoon milk based on nutrient contents and fatty acid profiles. IOP Conf. Ser. Earth Environ. Sci. 951:012099.
Ørskov, E. R. & I. Mcdonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499–503.
Petroski, W. & D. M. Minich. 2020. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients 12:1-32.
Putri, E. M., M. Zain, L. Warly, & H. Hermon. 2019. In vitro evaluation of ruminant feed from West Sumatera based on chemical composition and content of rumen degradable and rumen undegradable proteins. Vet. World. 12:1478–1483.
Putri, E. M., M. Zain, L. Warly, & H. Hermon. 2021. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Vet. World. 14:640-648.
Raffrenato, E., R. Fievisohn, K. W. Cotanch, R. J. Grant, L. E. Chase, & M. E. Van Amburgh. 2017. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy Sci. 100:8119–8131.
Rahmat, S. F. I., I. G. Permana, & Despal. 2021. Rumen degradation properties of tropical legumes feed under in sacco studies Rumen degradation properties of tropical legumes feed under in sacco studies. IOP Conf. Ser. Earth Environ. Sci. 888:012071.
Riestanti, L. U., Despal, & Y. Retnani. 2021. Supplementation of prill fat derived from palm oil on nutrient digestibility and dairy cow performance. Am. J. Anim. Vet. Sci. 16:172–184.
Rosmalia, A., I. G. Permana, Despal, & R. Zahera. 2021. Estimation rumen degradable protein of local feeds in dairy cattle using in sacco method. IOP Conf. Ser. Earth Environ. Sci. 883:012010.
Rosmalia, A., Astriani, W. P. Sahroni, I. G. Permana, & Despal. 2022a. Effect of rumen degradable protein and sulfur supplementation on in vitro digestibility and ruminal fermentation. IOP Conf. Ser. Earth Environ. Sci. 951:012013.
Rosmalia, A., I. G. Permana, & Despal. 2022b. Synchronization of rumen degradable protein with non-fiber carbohydrate on microbial protein synthesis and dairy ration digestibility. Vet. World. 15:252–261.
Santamaría-fernández, M. & M. Lübeck. 2020. Production of leaf protein concentrates in green biorefineries as alternative feed for monogastric animals. Anim. Feed Sci. Technol. 268:1-20.
Santos, F. A. P., J. E. P. Santo, C. B. Theurer, & J. T. Huber. 1998. Effects of rumen-undegradable protein on dairy cow performance: A 12-year literature review. J. Dairy Sci. 81:3182–3213.
Schwab, C. 2017. A 100-year review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 100:10094–10112.
Soliva, C. R., S. L. Amelchanka, & M. Kreuzer. 2015. The requirements for rumen-degradable protein per unit of fermentable organic matter differ between fibrous feed sources. Front. Microbiol. 6:1–17.
Steel, R. G. D. & J. H. Torrie. 1996. Principles and Procedures of Statistics: A Biometrical Approach. Subsequent Ed. McGraw-Hill College, New York.
Susanti, S. & E. Marhaeniyanto. 2014. Kadar saponin daun tanaman yang berpotensi menekan gas metana secara in-vitro. Buana Sains 14:29-38.
Tiemann, T. T., L. H. Franco, G. Ramírez, M. Kreuzer, C. E. Lascano, & H. D. Hess. 2010. Influence of cultivation site and fertilisation on the properties of condensed tannins and in vitro ruminal nutrient degradation of Calliandra calothyrsus, Flemingia macrophylla and Leucaena leucocephala. Anim. Feed Sci. Technol. 157:30–40.
Tilley, J. M. A. & R. A. Terry. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104–111.
Tremblay, G. F., G. A. Broderick, & S. M. Abrams. 1996. Estimating ruminal protein degradability of roasted soybeans using near infrared reflectance spectroscopy. J. Dairy Sci. 79:276–282.
Yacout, M. H. M. 2016. Anti-nutritional factors and its roles in animal nutrition. Journal Dairy, Veterinary Animal Research 4:239–241.
Yin, Y. 2020. Model-free tests for series correlation in multivariate linear regression. J. Stat. Plan. Inference. 206:179–195.
Zahera, R., L. A. Sari, I. G. Permana, & Despal. 2022. The use of near-infrared reflectance spectroscopy (NIRS) to predict dairy fibre feeds in vitro digestibility. IOP Conf. Ser. Earth Environ. Sci. 951:012100.


Despal (Primary Contact)
Y. I. Yulianti
R. Zahera
I. Agustiyani
A. Rosmalia
I. M. Afnan
M. Zain
U. H. Tanuwiria
Despal, YuliantiY. I., ZaheraR., AgustiyaniI., RosmaliaA., AfnanI. M., ZainM., & TanuwiriaU. H. (2023). Comparison of Chemical Composition, In Vitro Digestibility, and Near Infrared Reflectance Spectroscopy in Estimating In Situ Rumen Degradable Protein of Tropical Foliage. Tropical Animal Science Journal, 46(2), 211-220.

Article Details