The Association of Single Nucleotide Polymorphism -69T>G HSPA1A Gene with Bali Cattle Heat Tolerance

I. Suhendro, J. Jakaria, R. Priyanto, W. Manalu, R. R. Noor

Abstract

Heat shock protein plays an essential role in thermoregulatory during heat stress responses. This study aims to determine the association of single nucleotide polymorphism (SNP) -69T>G in the promoter region of the heat shock protein 70 member 1A (HSPA1A) gene on heat tolerance in Bali cattle. One hundred and sixteen heads of Bali cattle were collected from different locations such as Pangyangan, Bali Island; Serading, Sumbawa Island; and Sembalun, Lombok Island. The SNP was analyzed by genotyping using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), which used BstUI enzyme restriction. Physiological responses including respiration rate (Rr), rectal temperature (Tr), heart rate (Hr), heat tolerance coefficient (HTC), and blood glucose level (Glu) were measured. Association analysis was conducted using a general linear model by setting genotype, altitude, and sex as factors. The SNP -69T>G variant of HSPA1A gene found in this study were wild type (TT) with 144 bp & 498 bp; GG with 144, 236, & 262 bp; and TG with 144, 236, 262, & 498 bp. Bali cattle with the GG genotype had lower (p<0.001) Rr and HTC compared to the other genotypes. It could be concluded that physiological performances were lower at high altitudes, and the SNP -69T>G HSPA1A was associated with the physiological performances of Bali cattle. SNP -69T>G of HSPA1A could be utilized for candidate marker-assisted selection of Bali cattle to improve the performance of heat tolerance.

References

Abbas, Z., L. Hu, H. Fang, A. Sammad, L. Kang, L. F. Brito, Q. Xu, & Y. Wang. 2020. Association analysis of polymorphisms in the 5′ flanking region of the hsp70 gene with blood biochemical parameters of lactating holstein cows under heat and cold stress. Animals 10:1–15. https://doi.org/10.3390/ani10112016
Abdelnour, S. A., M. E. Abd. El-Hack, A. F. Khafaga, M. Arif, A. E. Taha, & A. E. Noreldin. 2019. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol. 79:120–134. https://doi.org/10.1016/j.jtherbio.2018.12.013
Allendorf, F. W., G. Luikart, & S. N. Aitken. 2013. Conservation and the Genetics of Populations. Wiley-Blackwell, New York.
Archana, P. 2017. Role of heat shock proteins in livestock adaptation to heat stress. J. Dairy Vet. Anim. Res. 5:13–19. https://doi.org/10.15406/jdvar.2017.05.00127
Barrett, L. W., S. Fletcher, & S. D. Wilton. 2012. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 69:3613. https://doi.org/10.1007/s00018-012-0990-9
Basiricò, L., P. Morera, V. Primi, N. Lacetera, A. Nardone, & U. Bernabucci. 2011. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones. 16:441–448. https://doi.org/10.1007/s12192-011-0257-7
Bhat, S., P. Kumar, N. Kashyap, B. Deshmukh, M. S. Dige, B. Bhushan, A. Chauhan, A. Kumar, & G. Singh. 2016. Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Vet. World. 9:113–117. https://doi.org/10.14202/vetworld.2016.113-117
Brown, A. H., S. T. Reiter, M. A. Brown, Z. B. Johnson, I. A. Nabhan, M. A. Lamb, A. R. Starnes, & C. F. Rosenkrans. 2010. Effects of heat shock protein-70 Gene and forage system on milk yield and composition of beef cattle. Prof. Anim. Sci. 26:398–403. https://doi.org/10.15232/S1080-7446(15)30621-5
Bucher, P. 1990. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 212:563–578. https://doi.org/10.1016/0022-2836(90)90223-9
Calvo, S. E., D. J. Pagliarini, & V. K. Mootha. 2009. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. 106:7507–7512. https://doi.org/10.1073/pnas.0810916106
Carabaño, M. J., M. Ramón, A. Menéndez-Buxadera, A. Molina, & C. Díaz. 2019. Selecting for heat tolerance. Anim. Front. 9:62–68. https://doi.org/10.1093/af/vfy033
Cochran, S. D., J. B. Cole, D. J. Null, & P. J. Hansen. 2013. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genet. 14:1–23. https://doi.org/10.1186/1471-2156-14-49
Dalcin, V. C., V. Fischer, D. dos S. Daltro, E. P. M. Alfonzo, M. T. Stumpf, G. J. Kolling, M. V. G. B. Da Silva, & C. McManus. 2016. Physiological parameters for thermal stress in dairy cattle. Revista Brasileira de Zootecnia 45:458–465. https://doi.org/10.1590/S1806-92902016000800006
Das, R., L. Sailo, N. Verma, P. Bharti, J. Saikia, Imtiwati, & R. Kumar. 2016. Impact of heat stress on health and performance of dairy animals: A review. Vet. World. 9:260–268. https://doi.org/10.14202/vetworld.2016.260-268
Deb, R., B. Sajjanar, U. Singh, S. Kumar, M. P. Brahmane, R. Singh, G. Sengar, & A. Sharma. 2013. Promoter variants at AP2 box region of HSP70.1 affect thermal stress response and milk production traits in Frieswal crossbred cattle. Gene. 532:230–235. https://doi.org/10.1016/j.gene.2013.09.037
Dikmen, S., X. -z. Wang, M. S. Ortega, J. B. Cole, D. J. Null, & P. J. Hansen. 2015. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress. J. Anim. Breed. Genet. 132: 409-419. https://doi.org/10.1111/jbg.12176
El-Tarabany, M. S., A. A. El-Tarabany, & M. A. Atta. 2017. Physiological and lactation responses of Egyptian dairy Baladi goats to natural thermal stress under subtropical environmental conditions. Int. J. Biometeorol. 61:61–68. https://doi.org/10.1007/s00484-016-1191-2
Gourdine, J. L., N. Mandonnet, M. Giorgi, & D. Renaudeau. 2017. Genetic parameters for thermoregulation and production traits in lactating sows reared in tropical climate. Animal 11:365–374. https://doi.org/10.1017/S175173111600135X
Hinnebusch, A. G., I. P. Ivanov, & N. Sonenberg. 2016. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science 352:1413. https://doi.org/10.1126/science.aad9868
Hu, L., Y. Ma, L. Liu, L. Kang, L. F. Brito, D. Wang, H. Wu, A. Liu, Y. Wang, & Q. Xu. 2019. Detection of functional polymorphisms in the hsp70 gene and association with cold stress response in Inner-Mongolia Sanhe cattle. Cell Stress Chaperones. 24:409–418. https://doi.org/10.1007/s12192-019-00973-5
Ikwegbue, P. C., P. Masamba, B. E. Oyinloye, & A. P. Kappo. 2018. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11:2. https://doi.org/10.3390/ph11010002
Imbriano, C., F. Bolognese, A. Gurtner, G. Piaggio, & R. Mantovani. 2001. HSP-CBF is an NF-Y-dependent Coactivator of the heat shock promoters CCAAT boxes. J. Biol. Chem. 276:26332–26339. https://doi.org/10.1074/jbc.M101553200
Jackson, P. G. G. & P. D. Cockcroft. 2007. Clinical Examination of Farm Animals. Blackwell Science Ltd, Iowa.
Kerekoppa, R. P., A. Rao, M. Basavaraju, G. R. Geetha, L. Krishnamurthy, T. V. L. N. Rao, D. N. Das, & K. Mukund. 2015. Molecular characterization of the HSPA1A gene by single-strand conformation polymorphism and sequence analysis in Holstein-Friesian crossbred and Deoni cattle raised in India. Turk. J. Vet. Anim. Sci. 39:128–133. https://doi.org/10.3906/vet-1212-3
Key, N., S. Sneeringer, & D. Marquardt. 2014. Climate Change, Heat Stress, and U.S. Dairy Production. USDA-ERS Economic Research Report Number p. 45. https://doi.org/10.2139/ssrn.2506668
Lees, A. M., V. Sejian, A. L. Wallage, C. C. Steel, T. L. Mader, J. C. Lees, & J. B. Gaughan. 2019. The impact of heat load on cattle. Animals 9:332. https://doi.org/10.3390/ani9060322
Li, G., H. Zhao, L. Wang, Y. Wang, X. Guo, & B. Xu. 2018. The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am. J. Cancer Res. 8:1106–1125. .
Li, M., F. U. Hassan, Y. Guo, Z. Tang, X. Liang, F. Xie, L. Peng, & C. Yang. 2020. Seasonal dynamics of physiological, oxidative and metabolic responses in non-lactating nili-ravi buffaloes under hot and humid climate. Front. Vet. Sci. 7:622. https://doi.org/10.3389/fvets.2020.00622
Mair, B., M. Drillich, D. Klein-Jöbstl, P. Kanz, S. Borchardt, L. Meyer, I. Schwendenwein, & M. Iwersen. 2016. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices. BMC Vet. Res. 12:1–11. https://doi.org/10.1186/s12917-016-0662-3
Mariana, E., C. Sumantri, D. A. Astuti, A. Anggraeni, & A. Gunawan. 2020. Association of HSP70 gene with milk yield and milk quality of Friesian Holstein in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 425:012045. https://doi.org/10.1088/1755-1315/425/1/012045
Matuoka, K. & K. Y. Chen. 2002. Transcriptional regulation of cellular ageing by the CCAAT box-binding factor CBF/NF-Y. Ageing Res. Rev. 1:639–651. https://doi.org/10.1016/S1568-1637(02)00026-0
Öner, Y., A. Keskin, H. Üstüner, D. Soysal, & V. Karakas. 2017. Genetic diversity of the 3’ and 5’ untranslated regions of the HSP70.1 gene between native Turkish and Holstein Friesian cattle breeds. S. Afr. J. Anim. Sci. 47:424–439. https://doi.org/10.4314/sajas.v47i4.2
Parmar, M. S., A. K. Madan, R. Huozha, S. K. Rastogi, & B. Mili. 2015. Heat shock protein70 (HSP70) gene expression pattern in peripheral blood mononuclear cells (PBMCs) during different seasons in sahiwal cows (Bos indicus). Indian J. Anim. Res. 5:109. https://doi.org/10.5958/2277-940X.2015.00018.2
Rosenkrans, C., A. Banks, S. Reiter, & M. Looper. 2010. Calving traits of crossbred Brahman cows are associated with Heat Shock Protein 70 genetic polymorphisms. Anim. Reprod. Sci. 119:178–182. https://doi.org/10.1016/j.anireprosci.2010.02.005
Rosenzweig, R., N. B. Nillegoda, M. P. Mayer, & B. Bukau. 2019. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20:665–680. https://doi.org/10.1038/s41580-019-0133-3
Said, S. & W. P. B. Putra. 2018. Novel single nucleotide polymorphisms (SNPs) in the 5’ UTR of bovine heat shock protein 70 (bHSP70) gene and its association with service per conception (S/C) of Pasundan cattle. Biodiversitas 19:1622–1625. https://doi.org/10.13057/biodiv/d190504
Shilja, S., V. Sejian, M. Bagath, A. Mech, C. G. David, E. K. Kurien, G. Varma, & R. Bhatta. 2016. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors. Int. J. Biometeorol. 60:1311–1323. https://doi.org/10.1007/s00484-015-1124-5
Singh, K. M., S. Singh, I. Ganguly, A. Ganguly, R. K. Nachiappan, A. Chopra, & H. K. Narula. 2016. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 141:113–117. https://doi.org/10.1016/j.smallrumres.2016.07.008
Singh, S. V., S. S. Beeman, A. K. Singh, & S. Kumar. 2015. Heat tolerance indices for cattle and buffalo. In: Climate Resilient Livestock & Production System. National Dairy Research Institute, Haryana. pp. 270–272.
St-Pierre, N. R., B. Cobanov, & G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86:E52–E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5
Suhendro, I., J. Jakaria, & R. R. Noor. 2021. The genetic diversity of heat shock protein 70 gene at promoter and 5’ untranslated region in beef cattle. J. Indones. Trop. Anim. Agric. 46:136–144. https://doi.org/10.14710/jitaa.46.2.136-144
Summer, A., I. Lora, P. Formaggioni, & F. Gottardo. 2019. Impact of heat stress on milk and meat production. Anim. Front. 9:39–46. https://doi.org/10.1093/af/vfy026
Tulaimat, A., R. M. Gueret, M. F. Wisniewski, & J. Samuel. 2014. Association between rating of respiratory distress and vital signs, severity of Illness, intubation, and mortality in acutely ill subjects. Respir. Care. 59:1338–1344. https://doi.org/10.4187/respcare.02650
Vincze, T., J. Posfai, & R. J. Roberts. 2003. NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Res. 31:3688–3691. https://doi.org/10.1093/nar/gkg526
Wang, J., J. Li, F. Wang, J. Xiao, Y. Wang, H. Yang, S. Li, & Z. Cao. 2020. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 11:1–8. https://doi.org/10.1186/s40104-020-00485-8
Xiong, Q., J. Chai, H. Xiong, W. Li, T. Huang, Y. Liu, X. Suo, N. Zhang, X. Li, S. Jiang, & M. Chen. 2013. Association analysis of HSP70A1A haplotypes with heat tolerance in Chinese holstein cattle. Cell Stress Chaperones. 18:711–718. https://doi.org/10.1007/s12192-013-0421-3
Yamanaka, T., H. Miyazaki, F. Oyama, M. Kurosawa, C. Washizu, H. Doi, & N. Nukina. 2008. Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J. 27:827–839. https://doi.org/10.1038/emboj.2008.23
Yosit, F., S. B. K. Prajoga, & E. M. Natawiria. 2016. Heat tolerance identification on adult Madura breeds cow according to Rhoad and Benezra coefficient. In: International Symposium on Sustainability Science. Bandung. pp. 87–90.

Authors

I. Suhendro
J. Jakaria
R. Priyanto
W. Manalu
R. R. Noor
ronny_noor@yahoo.com (Primary Contact)
SuhendroI., JakariaJ., PriyantoR., ManaluW., & NoorR. R. (2022). The Association of Single Nucleotide Polymorphism -69T&gt;G HSPA1A Gene with Bali Cattle Heat Tolerance. Tropical Animal Science Journal, 45(4), 429-435. https://doi.org/10.5398/tasj.2022.45.4.429

Article Details

List of Cited By :

Crossref logo