Nutrients, Fiber Fraction, and In Vitro Fiber Digestibility of Brown-Midrib Sorghum Mutant Lines Affected by The Maturity Stages

R. Sriagtula, P. D. M. H. Karti, L. Abdullah, Supriyanto, D. A. Astuti, Zurmiati


The mutant line of Brown-midrib sorghum has lower lignin content than conventional sorghum. The objectives of this research were to investigate the effects of plant maturity stages at harvest times on nutrient, fiber fraction, tannin content, volatile fatty acids (VFA) production, and in vitro fiber digestibility of mutant lines of Brown Midrib (BMR) sorghum. This research was arranged into a complete block design with a factorial arrangement in three replications. The first factor was a line of BMR sorghum consisted of 3 levels, i.e., Patir 3.1 (non-BMR line/control), Patir 3.2 (BMR line), and Patir 3.7 (BMR line). The second factor was the generative stages of sorghum consisted of 3 levels, i.e., flowering stage, soft-dough stage, and hard-dough stage. The observed variables were nutrient, fiber fraction, tannin content, in vitro rumen fluid characteristics, VFA proportion, acetate: propionate (A:P) ratio, and in vitro fiber-fraction digestibility (IVFFD). Data were analyzed by Analysis of Variance (ANOVA) and Duncan’s Multiple Range Test (DMRT). No interaction between sorghum-mutant lines and harvest time on nutrient contents, except on total digestible nutrients (TDN), tannin, and VFA. The factor of sorghum-mutant line affected (p<0.01) crude protein (CP), crude fiber (CF), acid detergent fiber (ADF), lignin, neutral detergent fiber digestibility (NDFD), NH3, butyrate, isovalerate, and valerate. Maturity stages affected dry matter (DM), CF, ash, crude fat, fiber, and fraction, except hemicellulose, acid detergent fiber digestibility (ADFD), and NDFD, NH3, isovalerate, and valerate. Patir 3.7 at the hard-dough stage produced the highest TDN, but the highest VFA was produced by Patir 3.1 at flowering stages. BMR sorghum-mutant lines produced higher ADF digestibility than non-BMR sorghum-mutant lines. The increasing NDF digestibility was significantly influenced by both sorghum-mutant lines and maturity stages (p<0.01). It is concluded that BMR sorghum-mutant lines at the hard-dough stage produce better nutrient and in vitro digestibility, but the butyric acid is higher in non-BMR sorghum-mutant lines.


AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.
Beck, P., K. Poe, B. Stewart, P. Capps, & H. Gray. 2013. Effect of brown midrib gene and maturity at harvest on forage yield and nutritive quality of Sudan grass. Japanese Society of Grassland Science, Grassland Science. 59:52-58.
Chaugool, J., M. Kondo, S. Kasuga, H. Naito, M. Goto, & H. Ehara. 2013. Nutritional evaluation and in vitro ruminal fermentation of Sorghum cultivars. J. Food. Agric. Environ. 2:345-351.
Cheng, S., Y. Sun, & L. Halgreen L. 2009. The relationships of Sorghum kernel pericarp and testa characteristics with tannin content. Asian J. Crop Sci. 1:1-5.
Christensen, C. S. L. & S. K. Rasmussen. 2019. Low lignin mutants and reduction of lignin content in grasses for increased utilisation of lignocellulose. Agronomy. 9:1-21.
Dahir, M., K. X. Zhu, X. N. Guo, W. Aboshora, & W. Peng. 2015. Possibility to utilize sorghum flour in a modern bread making industry. J. Acad. Ind. Res. 4:128-135.
Dasci, M. & B. Comakli. 2011. Effects of fertilization on forage yield and quality in ranges sites with different tophographic structure. Turkish J. Field Crop. 1:15-22.
de Aguilar, P. B., D. A. de-Asis Pires, B. C. B. Frota, J. A. S. Rodrigues, S. T. dos-Reis, & V. R. R. Junior. 2014. Nutritional characteristics of BMR mutant and normal sorghum genotypes used for cutting and grazing. Acta Sci. 3:259-264.
de Almeida, T. T., S. D. V. F. da Rosa., J. A. Oliveira., A. d. S. Oliveira., A. A. da Silva, & D. D. S. Pereira. 2014. Influence of tannin on sorghum seed germination. Afr. J. Food Sci. Technol. 5:136-142.
Firsoni. F., E. Conny, & Lisanti. 2010. Uji kecernaan in-vitro dedak padi yang mengandung daun paitan (Tithonia diversifolia (HEMSL.) A. Gray) dan kelor (Moringa oleifera, Lamk). JITV. 3:182-187.
GLP. 1969. General Laboratory Procedures, Department of Dairy Science. Univ Wisconsin, Madison (US).
Gracia, C. B. & M. A. Grusak. 2015. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula. Front. Plant Sci. 6:622.
Hartadi, H., S. Reksohadiprojo, & A. D. Tillman. 2005. Tabel Komposisi Pakan untuk Indonesia. Gadjah Mada University Press, Yogyakarta.
Hayes, C. M., B. D. Weers., M. Thakran., G. Burow., Z. Xin., Y. Emendack., J. J. Burke., W. L. Rooney, & J. E. Mullet. 2016. Discovery of a dhurrin QTL in Sorghum bicolor: colonization of dhurrin biosynthesis and novel stay-green QTL. Crop Sci. 56:104-112.
ICCSR (Indonesia Climate Change Sectoral Roadmap). 2020. Scientific Basis: Analysis and Projection of Temperature and Rainfall. [21 December 2020].
Jancik, F., V. Koukolova, & P. Homolka. 2010. Ruminal degradability of dry matter and neutral detergent fibre of grasses. Czech. J. Anim. Sci. 9:359-371.
Kaplan, M., A. Kamalak., A. A. Kasra, & I. Guven. 2014. Effect of maturity stages on potential nutritive value, methane production and condensed tannin content of Sanguisorba minor hay. Kafkas Univ. Vet. Fak. Derg. 20:445-449.
Kisworo, A. N., A. Agus, Kustantinah, & B. Suwignyo. 2017. Physicochemical characteristics, in vitro fermentation indicators, gas production kinetics, and degradability of solid herbal waste as alternative feed source for ruminants. Med. Pet. 2:101-110.
Koca, Y. O. & O. Erekul. 2016. Changes of dry matter, biomass and relatives growth ratewith different phenological stages of corn. Agriculture and Agricultural Science Procedia. 10:67-75.
Lee, M. A. 2018. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 131:641-654.
Li, Y., P. Mao, W. Zhang, X. Wang, Y. You, H. Zhao, L. Zhai, & G. Liu. 2015. Dynamic expression of the nutritive values in forage sorghum populations associated with white, green and brown midrid genotypes. Field Crops Res. 184:112-122.
Mathur, S., A. V. Umakanth, A. V. Tonapi, R. Sharma, & M. K. Sharma. 2017. Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnol. Biofuels. 10:1-19.
Nair, J., A.D., Beattie, D. Christensen., P. Yu., T. McAllister., D. Damiran., & J. J. McKinnon. 2018. Effect of variety and stage of maturity at harvest on nutrient and neutral detergent fiber digestibility of forage barley grown in western Canada Jayakrishnan. Can. J. Anim. Sci. 98:299-310.
Nohong, B. & R. Islamiyati. 2018. The effect of bio-slurry fertilization on growth, dry matter yield and quality of hybrid sudangrass and sorghum (Sorghum bicolor) Samurai-2 variety. Bulg. J. Agric. Sci. 24:592-598.
Pan, l., P. Li, X. K. Ma, Y. T. Xu, Q. Y. Tian, L. Liu, D. F. Li, & X. S. Piao. 2016. Tannin is a key factor in the determination and prediction of energy content in sorghum grains fed to growing pigs. J. Anim. Sci. 94:2879-2889.
Raffrenato, E., R. Fievisohn., K. W. Cotanch., R. J. Grant., L. E. Chase, & M. E. V. Amburgh. 2017. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy Sci. 100:1-13.
Rahman, M. M., M. A. M. Salleh, N. Sultana, M. J. Kim, & C. S. Ra. 2013. Estimation of total volatile fatty acid (VFA) from total organic carbons (TOCs) assessment through in vitro fermentation of livestock feeds. Afr. J. Microbiol. Res. 15:1378-1384.
Rosser, C. L., P. Gorka, A. D. Beattie, H. C. Block, J. J. Mckinnon, H. A. Lardner, & G. B. Penner. 2013. Effect of maturity at harvest on yield, chemical composition, and in situ degradability for annual cereals used for swathgrazing. J. Anim. Sci. 9:3815-3826.
Salama, H. S. A. & A. I. Nawar. 2016. Variations of the cell wall components of multi-cut forage legumes, grasses and legume-grass binary mixtures grown in Egypt. Asian J. Crop Sci. 3:96-102.
Saunders, C. S. 2015. Growth Performance, Ruminal Fermentation Characteristics, and Economic Returns of Growing Beef Steers Fed Brown Midrib, Corn, Silage-Based Diet. A Thesis of Animal, Dairy, and Veterinary Sciences. Utah State University, Logan, Utah.
Sedghi, M., A. Golian, R. P. Soleimani, A. Ahmadi, & M. A. Aami. 2012. Relationship between color and tannin content in sorghum grain: Application of image analysis and artificial neural network. Rev. Bras. Cienc. Avic. 14:57-62.
Sriagtula, R., P. D. M. H. Karti, L. Abdullah, Supriyanto, & D. A. Astuti. 2016. Growth, biomass and nutrient production of brown midrib sorghum mutant lines at different harvest times. Pak. J. Nutr. 6:524-531.
Sriagtula, R., P. D. M. H. Karti, L. Abdullah, Supriyanto, & D. A. Astuti. 2016b. Dynamics of fiber fraction in generative stage of M10- BMR sorghum mutant lines. Int. J. Sci. Basic Appl. Res. 2:58-69.
Sriagtula, R., P. D. M. H. Karti, L. Abdullah, Supriyanto, & D. A. Astuti. 2017. Nutrient changes and in vitro digestibility in generative stage of M10-BMR sorghum mutant lines. Med. Pet. 2:111-117.
Sriagtula. R., S. Sowmen, & Q. Aini. 2019. Growth and productivity of brown midrib sorghum mutant line Patir 3.7 (Sorghum bicolor L. Moench) treated with different levels of nitrogen fertilizer. Trop. Anim. Sci. J. 42:209-214.
Steel, R. G. D. & J. H. Torri. 1997. Prinsip dan Prosedur Statistika: Suatu Pendekatan Biometrik. Edisi II. Terjemahan: B. Sumantri. Gramedia Pustaka Utama, Jakarta.
Supelco. 2015. Bulletin 856, Analyzing Fatty Acids by Packed Column Gas Chromatography., Bellefonte (US).
Tilley, J. M. A. & R. A. Terry. 1963. A two stage technique for in the in vitro digestion of forage crops. J. Grassland Soc. 18:104.
Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant, 2nd ed. Cornell son, WI. University Press, Ithaca, NY.
Wahyono, T., I. Sugoro, A. Jayanegara, K. G. Wiryawan, & D. A. Astuti. 2019. Nutrient profile and in vitro degradability of new promising mutant lines sorghum as forage in Indonesia. Adv. Anim. Vet. Sci. 9:810-818.
Wang, L. W., Y. Wang, G. Wang, X. Xiong, W. Mei, A. Wu, X. Ding, Y. Li, Qiao, & L. Liao. 2018. Effects of fatty acid chain length on properties of potato starch-fatty acid complexes under partially gelatinization. Int. J. Food Prop. 1:2121-2134.
Wu, Y., X. Li, W. Xiang, C. Zhu, Z. Lin, Y. Wu, J. Li, S. Pandravada, D. D. Ridder, G. Bai, M. L. Wang, H. N. Trick, S. R. Bean, M. R. Tuinstra, T. T. Tesso, & J. Yu. 2012. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin. Proc. Natl. Acad. Sci. U.S.A. 109:10281-10286.
Xie, Z. L., T. F. Zhang., X. Z. Chen., G. D. Li, & J. G. Zhang. 2012. Effects of maturity stages on the nutritive composition and silage quality of whole crop wheat. Asian-Australas. J. Anim. Sci. 25:1374-1380.


R. Sriagtula (Primary Contact)
P. D. M. H. Karti
L. Abdullah
D. A. Astuti
SriagtulaR., KartiP. D. M. H., AbdullahL., Supriyanto, AstutiD. A., & Zurmiati. (2021). Nutrients, Fiber Fraction, and In Vitro Fiber Digestibility of Brown-Midrib Sorghum Mutant Lines Affected by The Maturity Stages. Tropical Animal Science Journal, 44(3), 297-306.

Article Details

List of Cited By :

Crossref logo