Adiponectin and Testosterone Levels and Their Correlations with Fertility in Anglo-Nubian x Etawah Grade Crossbred Bucks

  • Hafizuddin Hafizuddin Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala http://orcid.org/0000-0002-4824-742X
  • N. W. K. Karja Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University http://orcid.org/0000-0003-2595-5770
  • L. Praharani Indonesian Research Institute for Animal Production http://orcid.org/0000-0002-8878-7260
  • M. A. Setiadi Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University
Keywords: Adiponectin, Anglo-Nubian crossbred, Etawah grade, fertility, testosterone

Abstract

The purpose of the current study was to determine the concentrations of adiponectin and testosterone in various ages of bucks as well as the correlations of adiponectin and testosterone with semen quality as an indicator of fertility. Nineteen Anglo Nubian (AN) x Etawah Grade (PE) (Anpera) crossbred bucks belonged to the Research Institute for Animal Production were classified into four different age groups: 24 months, 30 months, 36 months, and more than 48 months. The concentrations of adiponectin and testosterone in the samples of blood plasma were analyzed using enzyme-linked immunosorbent assay (ELISA). The semen characteristics were evaluated both macroscopically and microscopically. The results of the study showed that plasma concentrations of adiponectin in Anpera bucks at the ages of 24, 30, 36, and more than 48 months were 14.10±1.73 mg/L, 18.36±8.25 mg/L, 20.38±8.67 mg/L, and 15.41±7.31 mg/L, respectively. There was no significant difference in adiponectin concentrations among the age groups (p>0.05). However, there were correlations of adiponectin concentrations with semen volume, sperm morphology, and sperm concentration. Plasma concentrations of testosterone at the ages of 24, 30, 36, and more than 48 months were 9.76±2.46 ng/mL, 9.81±1.56 ng/mL, 10.05±0.94 ng/mL, and 9.93±2.71 ng/mL, respectively. Plasma concentrations of testosterone in Anpera bucks also did not demonstrate a significant difference among the age groups (p>0.05). However, plasma testosterone concentrations had significant correlations with semen volume, sperm motility, and sperm concentration. In conclusion, the plasma concentrations of adiponectin and testosterone hormones had correlations with the semen quality parameters, which are related to fertility.

Downloads

Download data is not yet available.

References

Armansyah, T., E. R. P. Barat, C. V. R. Handini, D. Aliza, A. Sutriana, H. Hamdan, B. Panjaitan, A. Sayuti, & T. N. Siregar. 2018. Concentration and motility of spermatozoa and testosterone level of Kacang goat after seminal vesicle extract administration. Open. Vet. J. 8: 401-410. https://doi.org/10.4314/ovj.v8i4.9

Ayina, C. N. A., J. J. N. Noubiap, L. S. Etoundi Ngoa, P. Boudou, J. F. Gautier, M. K. Mengnjo, J. C. Mbanya, & E. Sobngwi. 2016. Association of serum leptin and adiponectin with anthropomorphic indices of obesity, blood lipids and insulin resistance in a Sub-Saharan African population. Lipids. Health. Dis. 15: 96. https://doi.org/10.1186/s12944-016-0264-x

Berger, T. 2019. Testicular estradiol and the pattern of Sertoli cell proliferation in prepuberal bulls. Theriogenology. 136: 60-65. https://doi.org/10.1016/j.theriogenology.2019.06.031

Boe-Hansen, G. B., J. P. A. Rego, J. M. Crisp, A. A. Moura, A. S. Nouwens, Y. Li, B. Venus, B. M. Burns, & M. R. McGowan. 2015. Seminal plasma proteins and their relationship with percentage of morphologically normal sperm in 2-year-old Brahman (Bos indicus) bulls. Anim. Reprod. Sci. 162: 20-30. https://doi.org/10.1016/j.anireprosci.2015.09.003

Brito, L. F., A. D. Barth, N. C. Rawlings, R. E. Wilde, D. H. Crews, P. S. Mir, & J. P. Kastelic. 2007. Effect of improved nutrition during calfhood on serum metabolic hormones, gonadotropins, and testosterone concentrations, and on testicular development in bulls. Domest. Anim. Endocrin. 33: 460-469. https://doi.org/10.1016/j.domaniend.2006.09.004

Byrne, C. J., S. Fair, A. M. English, C. Urh, H. Sauerwein, M. A. Crowe, P. Lonergan, & D. A. Kenny. 2017. Effect of breed, plane of nutrition and age on growth, scrotal development, metabolite concentrations and on systemic gonadotropin and testosterone concentrations following a GnRH challenge in young dairy bulls. Theriogenology. 96: 58-68. https://doi.org/10.1016/j.theriogenology.2017.04.002

Caminos, J. E., R. Nogueiras, F. Gaytán, R. Pineda, C. R. González, M. L. Barreiro, J. P. Castaño, M. M. Malagón, L. Pinilla, J. Toppari, C. Diéguez, & M. Tena-Sempere. 2008. Novel expression and direct effects of adiponectin in the rat testis. Endocrinology. 149: 3390-3402. https://doi.org/10.1210/en.2007-1582

Campos, D. B., M. F. Palin, V. Bordignon, & B. D. Murphy. 2008. The ‘beneficial’ adipokines in reproduction and fertility. Int. J. Obes. 32: 223-231. https://doi.org/10.1038/sj.ijo.0803719

Cawthorn, W. P., E. L. Scheller, & O. A. MacDougald. 2012. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid. Res. 53: 227-246. https://doi.org/10.1194/jlr.R021089

Choubey, M., A. Ranjan, P. S. Bora, F. Baltazar, L. J. Martin, & A. Krishna. 2019. Role of adiponectin as a modulator of testicular function during aging in mice. Biochim. Biophys. Acta. 1865: 413-427. https://doi.org/10.1016/j.bbadis.2018.11.019

Dianingtyas, B. D., Y. Retnani, & D. Evvyernie. 2017. Legume wafer supplementation to increase the performance of post-weaning Etawah grade goats. Med. Pet. 40: 42-46. https://doi.org/10.5398/medpet.2017.40.1.42

Dickson, K. A., & L. M. Sanford. 2005. Breed diversity in FSH, LH and testosterone regulation of testicular function and in libido of young adult rams on the southeastern Canadian prairies. Small. Rumin. Res. 56: 189-203. https://doi.org/10.1016/j.smallrumres.2004.06.002

El Kadili, S., M. Raes, J. L. Bister, B. Archa, M. Chentouf, & N. Kirschvink. 2019. Effect of season on sexual behavior, testicular measurements and seminal characteristics in “Beni Arouss” North Moroccan bucks. Anim. Reprod. Sci. 201: 41-54. https://doi.org/10.1016/j.anireprosci.2018.12.007

Elfassy, Y., J.-P. Bastard, C. McAvoy, S. Fellahi, J. Dupont, & R. Levy. 2018. Adipokines in semen: physiopathology and effects on spermatozoas. Int. J. Endocrinol. 2018: 1-11. https://doi.org/10.1155/2018/3906490

Elsheikh, A. S., & N. S. Elhammali. 2015. Semen quality of mature crossbred male goats during different seasons. IOSR-JAVS. 8: 1-5.

Fahey, A., P. Duffy, & S. Fair. 2012. Effect of exposing rams to a female stimulus before semen collection on ram libido and semen quality. J. Anim. Sci. 90: 3451-3456. https://doi.org/10.2527/jas.2011-4859

Ferasyi, T. R., M. Akmal, B. Hamdani, Razali, Azhari, S. Wahyuni, Amiruddin, Anwar, F. A. Pamungkas, S. Nasution, & R. A. Barus. 2015. Potency of combination of palm kernel meal and katuk leaf powder to improve the production performance of Peranakan Etawa (PE) goat: toward a strategy for quality control of meat using “CGE” concept. Procedia. Food. Sci. 3: 389-395. https://doi.org/10.1016/j.profoo.2015.01.043

França, L., S. Becker-Silva, & H. Chiarini-Garcia. 1999. The length of the cycle of seminiferous epithelium in goats (Capra hircus). Tissue Cell. 31: 274-280. https://doi.org/10.1054/tice.1999.0044

Goeritz, F., M. Quest, A. Wagener, M. Fassbender, A. Broich, T. B. Hildebrandt, R. R. Hofmann, & S. Blottner. 2003. Seasonal timing of sperm production in roe deer: interrelationship among changes in ejaculate parameters, morphology and function of testis and accessory glands. Theriogenology. 59: 1487-1502. https://doi.org/10.1016/S0093-691X(02)01201-3

Gotoh, H. 2010. Inherited sperm head abnormalities in the B10.M mouse strain. Reprod. Fertil. Dev. 22: 1066-1073. https://doi.org/10.1071/RD09295

Gregoraszczuk, E., M. Slupecka, J. Wolinski, A. Hejmej, B. Bilinska, E. Fiedor, N. Piwnicka, & A. Rak. 2016. Maternal high-fat diet during pregnancy and lactation had gender difference effect on adiponectin in rat offspring. J. Physiol. Pharmacol. 67: 543-553.

Hafez, E. S. E., & B. Hafez. 2000. Reproduction in Farm Animals. 7th edition. Lippincott Williams & Wilkins, Philadelphia (US). https://doi.org/10.1002/9781119265306

Hannan, M. A., N. Kawate, Y. Fukami, W. W. P. N. Weerakoon, E. E. Büllesbach, T. Inaba, & H. Tamada. 2017. Changes of plasma concentrations of insulin-like peptide 3 and testosterone, and their association with scrotal circumference during pubertal development in male goats. Theriogenology. 92: 51-56. https://doi.org/10.1016/j.theriogenology.2017.01.009

Heinz, J. F., S. P. Singh, U. Janowitz, M. Hoelker, D. Tesfaye, K. Schellander, & H. Sauerwein. 2015. Characterization of adiponectin concentrations and molecular weight forms in serum, seminal plasma, and ovarian follicular fluid from cattle. Theriogenology. 83: 326-333. https://doi.org/10.1016/j.theriogenology.2014.06.030

Henkel, R., G. Maass, H. C. Schuppe, A. Jung, J. Schubert, & W. B. Schill. 2005. Molecular aspects of declining sperm motility in older men. Fertil. Steril. 84: 1430-1437. https://doi.org/10.1016/j.fertnstert.2005.05.020

Kadivar, A., H. H. Khoei, H. Hassanpour, A. Golestanfar, & H. Ghanaei. 2016. Correlation of adiponectin mRNA abundance and its receptors with quantitative parameters of sperm motility in rams. Int. J. Fertil. Steril. 10: 127.

Kasimanickam, V. R., R. K. Kasimanickam, J. P. Kastelic, & J. S. Stevenson. 2013. Associations of adiponectin and fertility estimates in Holstein bulls. Theriogenology. 79: 766-777. https://doi.org/10.1016/j.theriogenology.2012.12.001

Kawwass, J. F., R. Summer, & C. B. Kallen. 2015. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review. Mol. Hum. Reprod. 21: 617-632. https://doi.org/10.1093/molehr/gav025

Lumeng, C. N., J. Liu, L. Geletka, C. Delaney, J. Delproposto, A. Desai, K. Oatmen, G. Martinez-Santibanez, A. Julius, S. Garg, & R. L. Yung. 2011. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol. 187: 6208-6216. https://doi.org/10.4049/jimmunol.1102188

Maidin, M. S., M. Padlan, S. Azuan, R. Jonit, N. Mohammed, & R. Abdullah. 2018. Supplementation of Nigella sativa oil and honey prolong the survival rate of fresh and post-thawed goat sperms. Trop. Anim. Sci. J. 41: 94-99. https://doi.org/10.5398/tasj.2018.41.2.94

Malik, M. I., H. Jamil, Z. I. Qureshi, A. Mehfooz, S. N. B. Rizvi, S. Ullah, S. R. Dilshad, A. Zaman, N. Ullah, & S. K. Safdar. 2018. Investigation on relationship of hormonal profile and biochemical constituents of seminal plasma with physical characteristics of Damani buck semen. Pure. Appl. Biol. 7: 684-691.

Mickelsen, W. D., L. G. Paisley, & J. J. Dahmen. 1982. The relationship of libido and serving capacity test scores in rams on conception rates and lambing percentage in the ewe. Theriogenology. 18: 79-86. https://doi.org/10.1016/0093-691X(82)90051-6

Pezzanite, L., A. Bridges, M. Nearly, & T. Hutchens. 2017. Breeding Soundness Examination of Rams and Bucks. Purdue University Cooperative Extension Service, West Lafayette (US).

Pfaehler, A., M. K. Nanjappa, E. S. Coleman, M. Mansour, D. Wanders, E. P. Plaisance, R. L. Judd, & B. T. Akingbemi. 2012. Regulation of adiponectin secretion by soy isoflavones has implication for endocrine function of the testis. Toxicol. Lett. 209: 78-85. https://doi.org/10.1016/j.toxlet.2011.11.027

Rajak, S. K., A. Kumaresan, M. K. Gaurav, S. S. Layek, T. K. Mohanty, M. K. M. Aslam, U. K. Tripathi, S. Prasad, & S. De. 2014. Testicular cell indices and peripheral blood testosterone concentrations in relation to age and semen quality in crossbred (Holstein Friesian × Tharparkar) bulls. Asian-Australas. J. Anim. Sci. 27: 1554-1561.https://doi.org/10.5713/ajas.2014.14139

Ray, P. F., A. Toure, C. Metzler-Guillemain, M. J. Mitchell, C. Arnoult, & C. Coutton. 2017. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin. Genet. 91: 217-232. https://doi.org/10.1111/cge.12905

Rodrigues, M., C. Souza, J. Martins, J. Rego, J. Oliveira, G. Domont, F. Nogueira, & A. Moura. 2013. Seminal plasma proteins and their relationship with sperm motility in Santa Ines rams. Small. Rumin. Res. 109: 94-100. https://doi.org/10.1016/j.smallrumres.2012.07.032

Shupe, J., J. Cheng, P. Puri, N. Kostereva, & W. H. Walker. 2011. Regulation of Sertoli-Germ cell adhesion and sperm release by FSH and nonclassical testosterone signaling. Mol. Endocrinol. 25: 238-252. https://doi.org/10.1210/me.2010-0030

Singh, A., P. Brar, & R. Cheema. 2014. Relationships among frozen-thawed semen fertility, physical parameters, certain routine sperm characteristics and testosterone in breeding Murrah buffalo (Bubalus bubalis) bulls. Vet. World. 7: 644-651.https://doi.org/10.14202/vetworld.2014.644-651

Sodiq, A. 2012. Non genetic factors affecting pre-weaning weight and growth rate of Etawah grade goats. Med. Pet. 35: 21. https://doi.org/10.5398/medpet.2012.35.1.21

Swelum, A. A.-A., I. M. Saadeldin, H. A. Zaher, S. A. M. Alsharifi, & A. N. Alowaimer. 2017. Effect of sexual excitation on testosterone and nitric oxide levels of water buffalo bulls (Bubalus bubalis) with different categories of sexual behavior and their correlation with each other. Anim. Reprod. Sci. 181: 151-158. https://doi.org/10.1016/j.anireprosci.2017.04.003

Thomas, S., D. Kratzsch, M. Schaab, M. Scholz, S. Grunewald, J. Thiery, U. Paasch, & J. Kratzsch. 2013. Seminal plasma adipokine levels are correlated with functional characteristics of spermatozoa. Fertil. Steril. 99: 1256-1263. e1253. https://doi.org/10.1016/j.fertnstert.2012.12.022

Ting-Ting, W., Z. Ying-Ying, Y. Yi-Ning, L. Xiao-Mei, M. Yi-Tong, & X. Xiang. 2019. Age, sex, and cardiovascular risk attributable to lipoprotein cholesterol among Chinese individuals with coronary artery disease: a case-control study. Metab. Syndr. Relat. Disord. 17: 223-231. https://doi.org/10.1089/met.2018.0067

Yu, P., R. Yuan, X. Yang, & Z. Qi. 2019. Adipose tissue, aging, and metabolism. Curr. Opin. Endocr. Metab. Res. 5: 11-20. https://doi.org/10.1016/j.coemr.2019.02.003

Zhao, C., R. Huo, F. Q. Wang, M. Lin, Z. M. Zhou, & J. H. Sha. 2007. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil. Steril. 87: 436-438. https://doi.org/10.1016/j.fertnstert.2006.06.057

Published
2020-06-03
How to Cite
Hafizuddin, H., Karja, N. W. K., Praharani, L., & Setiadi, M. A. (2020). Adiponectin and Testosterone Levels and Their Correlations with Fertility in Anglo-Nubian x Etawah Grade Crossbred Bucks. Tropical Animal Science Journal, 43(2), 110-116. https://doi.org/10.5398/tasj.2020.43.2.110