THE EFFECT OF DIFFERENCES pH OF WATERS ON THE GROWTH RATE OF SEAGRASS OF Cymodocea rotundata

Yudho Andika, Mujizat Kawaroe, Hefni Effendi, Neviaty Putri Zamani, Erniati, Erlangga, Saiful Adhar, Imanullah, Imamshadiqin, Cut Meurah Nurul 'Akla, Ayub Sugara, Bq Tri Khairani Ilhami

Abstract

The continued use of fossil fuels will increase the concentration of carbon dioxide (CO2) in the atmosphere. Ocean acidification occurs due to CO2 in the atmosphere diffusing into the oceans. The oceans are able to absorb CO2 in the atmosphere as much as 35 % more which causes a decrease in ocean pH. Seagrass Cymodocea rotundata is a type of seagrass that can be found growing in tropical waters. This situation raises concerns about the possible impact on the growth of seagrass C. rotundata. This study aims to analyze the content of nitrate, phosphate and potassium and the growth of seagrass C. rotundata which includes the growth of leaves, rhizomes and roots of C. rotundata against differences in pH. The study used an experimental method with a completely randomized design using a random table. A total of 15 jars with a diameter of 20 cm and a height of 25 cm were used with 3 treatments, each treatment was repeated 5 times. The results of the linear regression test showed that pH had an effect on nitrate concentrations, and had a strong effect on phosphate and potassium concentrations. The highest growth rate of C. rotundata seagrass leaves in the control ranged from 0.50–1.29 mm/day while the lowest at low pH ranged from 0.07–0.73 mm/day. The growth rate of seagrass rhizomes horizontally and vertically was highest at low pH while the lowest was at control pH. The highest growth rate of seagrass roots at low pH ranged from 0.20–0.90 mm/day. while the lowest was in the control ranged from 0.13–0.43 mm/day. pH also affects the growth rate of leaves, rhizomes and seagrass roots of C. rotundata. The lower the pH, the lower the leaf growth rate, in contrast to rhizomes and roots, the lower the pH, the higher the growth rate.

References

Aboud, S.A. & J.F. Kannah. 2017. Abundance, distribution and diversity of seagrass species in lagoonal reefs on the Kenyan coast. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 37(1): 52-67. https://www.asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/3484
American Public Health Association (APHA). 2012. Standar method for the examination of water and waste wayer. 22 Edition. Environmental Protection Agency Press. Washington DC. 1360 pp.
Agostini, S., B.P. Harvey, S. Wada, K. Kon, M. Milazzo, K. Inaba, & J.M. Hall-Spancer. 2018. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone. Scientific Report, 8(11354): 1-11 https://doi.org/10.1038/s41598-018-29251-7
Agustina, L., P.P. Simanjuntak, & A.N. Khoir. 2019. Pengaruh parameter meteorologi terhadap Konsentrasi CO2 dan CH4 di DKI Jakarta. Jurnal Meteorologi Klimatologi dan Geofisika, 6(2): 39-47. https://doi.org/10.36754/jmkg.v6i2.121
Andika, Y., M. Kawaroe, H. Effendi, & N.P. Zamani. 2020. Pengaruh kondisi ph terhadap respons fisiologis daun lamun jenis Cymodocea rotundata. Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(2): 487-495. https://doi.org/10.29244/jitkt.v12i2.21632
Apostolaki, E.T., S. Vizzini, I.E. Hendriks, & Y.S. Olsen. 2014. Seagrass ecosystem response to long-term high co2 in a mediterranean volcanic vent. Marine Environmental Research, 99: 9-15. https://doi.org/10.1016/j.marenvres.2014.05.008
Arfiati, D., E.Y. Herawati, N.R. Buwono, & A. Firdaus. 2019. Struktur komunitas makrozoobentos pada ekosistem lamun di Paciran, Kabupaten Lamongan, Jawa Timur. Journal of Fisheries and Marine Research, 3(1): 1-7. https://doi.org/10.21776/ub.jfmr.2019.003.01.1
Bengen, D.G. 2001. Ekosistem dan sumberdaya alam pesisir. Pusat Kajian Sumberdaya Pesisir dan Lautan. Bogor. 62 p.
Bindoff, N.L., W.W.L. Cheung, J.G Kairo, J. Arı ´stegui, V.A. Guinder, R. Hallberg, N. Hilmi, et al. 2019. Changing Ocean, Marine Ecosystems, and Dependent Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Ed. By H.-O. Po¨rtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, et al. in press.
Blackford, J.C., & F.J. Gilbert. 2007. pH variability and CO2 induced acidification in the North Sea. Journal of Marine Systems, 64(1-4): 229-241. https://doi.org/10.1016/j.jmarsys.2006.03.016
Brodersen, K.E., D.A. Nielsen, P.J. Ralph, & M. Kuhl. 2015. Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytologist, 205(3): 1264-1276. https://doi.org/10.1111/nph.13124
Campbell, J.E. & J.W. Fourqurean. 2014. Ocean acidification outweighs nutrient effects in structuring seagrass epiphyte communities. Journal Ecology, 102(3): 730–737. https://doi.org/10.1111/1365-2745.12233
Collier, C.J., L. Langlois, Y. Ow, C. Johansson, M. Giammusso, M.P. Adams, K.R. O’Brien & S. Uthicke. 2018. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. New Phytologist, 219(3): 1005–1017. https://doi.org/10.1111/nph.15234
Collier, C.J., & M. Waycott. 2014. Temperature extremes reduce seagrass growth and induce mortality. Marine Pollution Bulletin, 83(2): 483-490. https://doi.org/10.1016/j.marpolbul.2014.03.050
Cox, T.E., F. Gazeau, S. Alliouane, I.E. Hendriks, P. Mahaeck, A. Le Fur, & J.P. Gattuso. 2016. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the mediterranean seagrass posidonia oceanica. Biogeosciences, 13: 2179–2194. https://doi.org/10.5194/bg-13-2179-2016
Doo, S.S., A. Kealoha, A. Andersson, A.L. Cohen, TL. Hicks, Z.I Johnson, M.H. Long, P. McElhany, N. Mollica, K.E.F. Shamberger, N.J. Silbiger, Y. Takeshita, & D. Busch. 2020. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES Journal of Marine Science, 77(7-8): 2411–2422. https://doi.org/10.1093/icesjms/fsaa094
Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S Olsen, A. Steckbauer, L. Ramajo, & J. Carstensen. 2013. Is ocean acidification an open-ocean syndrome? understanding anthropogenic impacts on seawater pH. Estuaries Coasts. 36(2): 221–236. https://doi.org/10.1007/s12237-013-9594-3
Effendi, H. 2003. Telaah kualitas air bagi pengelolaan sumberdaya dan lingkungan perairan. Kanisius. Yogyakarta. 257 pp.
Egea, L.G., R.J. Ramos, I. Herna´ndez, T.J. Bouma, & F.G. Brun. 2018. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations. Plos One. 13(2): 1-20. https://doi.org/10.1371/journal.pone.0192402
Gruber, N., D. Clement, B.R. Carter, R.A. Feely, S.V. Heuven, M. Hoppema, M. Ishii, R.M. Key, A. Kozyr, S.K. Lauvset, C. Lo Monaco, J.T. Mathis, A. Murata, A. Olsen, F.F. Perez, C.L. Sabine, T. Tanhua, & R. Wanninkhof. 2019. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432): 1193–1199. https://doi.org/10.1126/science.aau5153
Hall-Spancer, J.M. & B.P. Harvey. 2019. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerging Topics in Life Sciences, 3(2): 197–206. https://doi.org/10.1042/ETLS20180117
Hasler-Sheetal, H. & M. Holmer. 2015. Sulfide intrusion and detoxification in the seagrass Zostera marina. PLoS one, 10(6): 1-19. https://doi.org/10.1371/journal.pone.0129136
Hidayat, M., Ruswahyuni, & N. Widyorini. 2014. analisis laju sedimentasi di daerah padang lamun dengan tingkat kerapatan berbeda di Pulau Panjang, Jepara. Management of Aquatic Resources, 3(3): 73-79. https://doi.org/10.14710/marj.v3i3.5624
Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge. 1434 pp.
Invers, I., J. Romero, & M. Perez. 1997. Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquatic Botany, 59(1-4): 185-194. https://doi.org/10.1016/S0304-3770(97)00072-7
Jiang, Z.J., X.P. Huang, J.P. Zhang. 2010. Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) aschers. Journal of Integrative Plant Biology, 52(10): 904–913. https://doi.org/10.1111/j.1744-7909.2010.00991.x
Johnson, R.A., K.M. Hanesh, A.B. Bolten, & K.A. Bjorndal. 2022. Simulated green turtle grazing alters effects of environmental drivers on seagrass growth dynamics across seasons. Limnology and Oceanography, 9999: 1-14. https://doi.org/10.1002/lno.12227
Kawaroe, M., A.H. Nugraha, & Juraij. 2016. Ekosistem padang lamun. IPB press. Bogor. 114 pp.
Koch, M., G. Bowes, C. Ross, & X.H. Zhang. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology, 19(1): 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x
Le Que´re, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A.C. Manning, J.I. Korsbakken, et al. 2018. Global carbon budget. Earth System Science Data, 10: 405-448. https://doi.org/10.5194/essd-10-2141-2018
Martin, B.C., J. Bougoure, M.H. Ryan, W.W. Bennett, T.D. Colmer, N.K. Joyce, Y.S. Olsen, & G.A. Kendrick. 2018. Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. The ISME Journal, 13: 707-719. https://doi.org/10.1038/s41396-018-0308-5
Martin, S., R.R. Metalpa, E. Ransome, S. Rowley, M.C. Buia, J.P. Gattuso, & J. Hall-Spencer. 2008. Effects of naturally acidified seawater on seagrass calcareous epibionts. Biology Letters, 4: 689–692. https://doi.org/10.1098/rsbl.2008.0412
McEnaney, R.A. 2019. Effects of reduced pH on health biomarkers of the seagrass Cymodocea nodosa. DePaul Discoveries Undergraduate Research Journal, 8(1): 1-9. https://via.library.depaul.edu/depaul-disc
Mishra, A.K., S. Cabaço, C.B. de los Santos, E.T. Apostolaki, S. Vizzini, & R. Santos. 2020. Long-term effects of elevated CO2 on the population dynamics of the seagrass Cymodocea nodosa: evidence from volcanic seeps. Marine Pollution Bulletin, 162: 1-11. https://doi.org/10.1016/j.marpolbul.2020.111824
Pajusalu, L., G. Martin, A. Pollumae, & T. Paalme. 2016. The influence of CO2 enrichment on net photosynthesis of seagrass Zostera marina in a brackish water environment. Frontiers In Marine Science, 3(239): 1-10. https://doi.org/10.3389/fmars.2016.0023
Paramitha, A., B. Utomo, & Desrita. 2014. Studi klorofil-a di kawasan Perairan Belawan Sumatera Utara. Jurnal Aquacoastmarine, 2(2): 106–118. https://jurnal.usu.ac.id/index.php/aquacoastmarine/article/view/8827/0
Prayogo, B.P., F. Idris, & A.H. Nugraha. 2021. Pertumbuhan dan produksi biomassa lamun Thalassia hemprichii di pesisir Pulau Bintan. Jurnal Ilmu Kelautan Kepulauan, 4(2): 425-434. http://dx.doi.org/10.33387/jikk.v4i2.3882
Rahman, A.A., A.I. Nur, & M. Ramli.2016. Studi laju pertumbuhan lamun (Enhalus acoroides) di perairan pantai Desa Tanjung Tiram Kabupaten Konawe Selatan. Sapa laut, 1(1): 10-16. http://dx.doi.org/10.33772/jsl.v1i1.925
Ravaglioli, C., C. Lauritano, M.C. Buia, E. Balestri, A. Capocchi, D. Fontanini, G. Pardi, L. Tamburello, G. Procaccini, & F. Bulleri. 2017. Nutrient loading fosters seagrass productivity under ocean acidification. Nature, 7(13732): 1-14. https://doi.org/10.1038/s41598-017-14075-8
Riniatsih, I. & H. Endrawati. 2013. Pertumbuhan lamun hasil transplantasi jenis Cymodocea rotundata Di Padang Lamun Teluk Awur Jepara. Buletin Oseanografi Marina, 2(1): 34-40. https://doi.org/10.14710/buloma.v2i1.6924
Saba, G.K., A. Kaitlin, Goldsmith, R. Sarah, Cooley, D. Grosse, L. Shannon, A. Meseck, W. Miller, B. Phelan, M. Poach, R. Rheault, K. St. Laurent, J.M. Testa, J.S. Weis, R. Zimmerman. 2019. Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic. Estuarine, Coastal and Shelf Science, 225(1): 1-15. https://doi.org/10.1016/j.ecss.2019.04.022
Santos, C.B.D.L., J.A. Godbold, & M. Solan. 2017. Short-term growth and biomechanical responses of the temperate seagrass Cymodocea nodosa to CO2 enrichment. Marine Ecology Progress Series, 572: 91–102. https://doi.org/10.3354/meps12153
Sarmiento, J.L. & N. Gruber. 2006. Ocean biogeochemical dynamics. Princeton University Press. New Jersey. 503 pp.
Short, F.T. & C.M. Duarte. 2001. Methods for the measurement of seagrass and growth production. Di dalam: Short FT, Coles RG, editor. Global Seagrass Research Methods. Elsevier Science, 8: 155-182. https://doi.org/10.1016/B978-044450891-1/50009-8
Short, F.T., B. Polidoro, S.R. Livingstone, K.E. Carpenter, S. Bandeira, J.S. Bujang, H.P. Calumpong, T.J.B. Carruthers, R.G. Coles, W.C. Dennison, P.L.A. Erftemeijer, M.D. Fortes, A.S. Freeman, T.G. Jagtap, A.H.M. Kamal, G.A. Kendrick, W.J. Kenworthy, Y.A. La Nafie, & J.C. Zieman. 2011. Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144(7): 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010
Sjafrie, M.D.N., U.E. Hernawan, B. Prayudha, M.Y. Iswari, Rahmat, K. Anggraini, S. Rahmawati, Suyarso, & I.H. Supriyadi. 2018. Status padang lamun Indonesia Ver. 02. LIPI. Jakarta.
Suliyanto. 2012. Analisis statistik pendekatan praktis dengan Microsoft Excel. Andi offset. Yogyakarta. 232 pp.
Takahashi, M., S.H.C. Noonan, K.E. Fabricius, & C.J. Collier. 2016. The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents. ICES Journal of Marine Science, 73(3): 876–886. https://doi.org/10.1093/icesjms/fsv157
Zeebe, R.E. & D.A. Wolf-Gladrow. 2001. CO2 in seawater: equilibrium, kinetics and isotopes. Elsevier Oceanography Series. Amsterdam 346 pp.

Authors

Yudho Andika
andikayudho@unimal.ac.id (Primary Contact)
Mujizat Kawaroe
Hefni Effendi
Neviaty Putri Zamani
Erniati
Erlangga
Saiful Adhar
Imanullah
Imamshadiqin
Cut Meurah Nurul 'Akla
Ayub Sugara
Bq Tri Khairani Ilhami
Yudho Andika, KawaroeM., EffendiH., ZamaniN. P., Erniati, Erlangga, AdharS., Imanullah, Imamshadiqin, ’AklaC. M. N., SugaraA., & IlhamiB. T. K. (2023). THE EFFECT OF DIFFERENCES pH OF WATERS ON THE GROWTH RATE OF SEAGRASS OF Cymodocea rotundata. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 15(1), 99-111. https://doi.org/10.29244/jitkt.v15i1.43331

Article Details