• Gandhi Napitupulu Mahasiswa Sains Kebumian, Fakultas Ilmu dan Teknologi Kebumian, Institut Teknologi Bandung
  • Totok Suprijo Oceanography Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40116, Indonesia
  • Faruq Khadami
  • Faizal Ade R. Abdullah
  • Hening Sesami Department of Oceanography, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
  • Poerbandono Hydrography Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40116, Indonesia
  • Adi Prasetyo Experimental Station for Coastal Engineering, The Ministry of Public Works and Housing Buleleng, Bali, 81116, Indonesia
  • Juventus Ginting Experimental Station for Coastal Engineering, The Ministry of Public Works and Housing Buleleng, Bali, 81116, Indonesia
  • Eduardo Simanjuntak
Keywords: reflected wave, transmission wave, wave parameter, spectrum energy


Breakwater structures are widely used for coastal protection from the blows of ocean waves that propagate to coastal areas. One of the breakwater innovations being developed is the pile structure. Piles are a replication of mangrove tree trunks that can reduce wave energy, so it is necessary to test their effectiveness in reducing wave energy. So the purpose of this study is to analyze the effectiveness of the pile structure by analyzing the wave behavior before and after colliding with the pile structure based on the wave theory division. Physical laboratory simulations have been carried out to obtain wave data that interacts with the pile structure. Furthermore, energy spectrum analysis is used to determine the energy spectrum of the incident wave, reflection and transmission of wave probe measurements in the form of time series data. Each energy spectrum is used to see the reflection and transmission capabilities of the pile structure from the reflection and transmission coefficients. The reflection and transmission coefficient values ​​were estimated using a third degree polynomial equation resulting in RMSE = 0.087 and RMSE = 0.051 with the basic wave parameters being variable, namely wave height, wave period and water depth. The critical point of the polynomial equation shows the minimum reflection and transmission coefficient values ​​when it is in the Cnoidal region and maximum when it is in the 2nd order Stokes region.


Download data is not yet available.


Abdullah, F.A.R., S. Husrin, & H. Bachtiar. 2019. Experimental data analysis of wave attenuation in mangroves. In Journal of Physics: Conference Series, 1245(1): 012095.

Abdullah, F.A.R., T. Suprijo, H. Diastomo, & G. Napitupulu. 2022. Numerical Modelling of Wave Attenuation in Pile Breakwater. In IOP Conference Series: Earth and Environmental Science, 1047(1): 012029.

Achiari, H., A.L. Ahmad, & D.M. Sulaiman. 2020. Analisis refleksi dan transmisi gelombang pada pemecah gelombang tiang pancang. Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(3): 723-737.

Coastal Engineering Research Center (CERC). 1973. Shore Protection Manual, (Vol. 1). US Army Coastal Engineering Research Center. 250-256.

Costello, R.D. 1952. Damping of water waves by vertical circular cylinders. Eos, Transactions American Geophysical Union, 33(4): 513-519.

Eckart, C. 1952. The propagation of gravity waves from deep to shallow water. In Proceedings of NBS Semicentennial Symposium on Gravity Waves Held at the NBS on June, 521: 18-20.

El Serafy, S.Y., Y.E. Mostafa, Y.M. EL Saie, & C.F. Gad. 2015. Investigating the energy dissipation capability of solid piles breakwater., International Journal of Sciences: Basic and Applied Research (IJSBAR), 24(2): 1-13.

Hayashi, T., M. Hattori, T. Kano & M. Shirai. 1966. Hydraulic research on the closely spaced pile breakwater. Coastal Engineering in Japan, 9(1): 107-117.

Hedges, T.S. & URSEL. 1995. Regions of validity of analytical wave theories. Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 112(2): 111-114.

Herbich, J.B. & B. Douglas. 1988. Wave transmission through a double-row pile breakwater. Coastal Engineering Proceedings, 1(21): 165-165.

Herbich, J.B. 1990. Extent of contaminated marine sediments and cleanup methodology. Coastal Engineering Proceedings, 1(22): 2894-2907.

Kakuno, S. & P.L.F. Liu. 1993. Scattering of water waves by vertical cylinders. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(3): 302-322.

Lin, C.Y. & C.J. Huang. 2004. Decomposition of incident and reflected higher harmonic waves using four wave gauges. Coastal engineering, 51(5-6), 395-406.

Mani, J.S. & S. Jayakumar. 1995. Wave transmission by suspended pipe breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering, 121(6): 335-338.

Mansard, E.P. & E.R. Funke. 1980. The measurement of incident and reflected spectra using a least squares method. Coastal Engineering Proceedings (17:): 8-8.

Massel, S.R. 2005. Ocean surface waves: their physics and prediction, 11: 270-290.

Rao, S., Rao, N.B.S. & V.S. Sathyanarayana. 1999. Laboratory investigation on wave transmission through two rows of perforated hollow piles. Ocean engineering, 26(7): 675-699.

Sathyanarayana, A.H., P.S. Suvarna, P. Umesh, & K.G. Shirlal. 2021. Performance characteristics of a conical pile head breakwater: An experimental study. Ocean Engineering, 235: 109395.

Smit, P.B., I.A. Houghton, K. Jordanova, T. Portwood, E. Shapiro, D. Clark, M. Sosa, & T.T. Janssen. 2021. Assimilation of significant wave height from distributed ocean wave sensors. Ocean Modelling, 159, p.101738.

Simanjuntak, E.M., L. Eliasta, J.W. Ginting, & I.A.I.D.R. Putra. 2019. Modelling Wave Dissipation on Pile Breakwater Using Xbeach. Jurnal Teknik Hidraulik, 10(1): 1-14.

Suh, K.D., C.H. Ji & B.H. Kim. 2011. Closed-form solutions for wave reflection and transmission by vertical slotted barrier. Coastal Engineering, 8(12): 1089-1096.

Suh, K.D., S. Shin, & D. Cox. 2006. Hydrodynamic characteristics of pile-supported vertical wall breakwaters. American Society of Civil Engineers, 132(2): 83-96.

Suvarna, P.S., A.H. Sathyanarayana, P. Umesh, & K.G. Shirlal. 2020. Laboratory investigation on hydraulic performance of enlarged pile head breakwater. Ocean Engineering, 217: 107989.

Truitt, C.L. & J.B. Herbich. 1986. Transmission of random waves through pile breakwaters. Coastal Engineering Proceedings, 20: 169-169.

Van Weele, B.J. & J.B. Herbich. 1972. Wave reflection and transmission for pile arrays. Coastal Engineering Proceedings, (13): 106-106.

Wiegel, R.L. 1960. Transmission of waves past a rigid vertical thin barrier. Journal of the Waterways and harbors division, 86(1): 1-12.

Zhu, X., Y. Cao, J. Zhang, J., E.W. Plummer, & J. Guo. 2015. Classification of charge density waves based on their nature. Proceedings of the National Academy of Sciences, 112(8): 2367-2371.

How to Cite
NapitupuluG., SuprijoT., KhadamiF., AbdullahF. A. R., SesamiH., Poerbandono, PrasetyoA., GintingJ., & SimanjuntakE. (2023). STUDY OF WAVE BEHAVIOR DUE TO CYLINDER PILE STRUCTURE THROUGH ENERGY SPECTRUM ANALYSIS. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 15(1), 13-30.