THE EFFECTS OF INITIAL EXOGENOUS FEED ON DIGESTIVE ENZYMES ACTIVITY AND GROWTH OF Epinephelus fuscoguttatus (Forsskal, 1775) LARVAE

Regina melianawati, Rarastoeti Pratiwi

Abstract

The initial exogenous feeding is crucial in marine fish larviculture, including tiger grouper (Epinephelus fuscoguttatus). The transition from endogenous to exogenous feed is critical for the survival rate of the early stage of larvae. The exogenous feed can influence digestive enzymes activity and larval growth. This study was aimed to determine the role of initial exogenous feed on digestive enzymes activity and growth in the early stage of tiger grouper larvae. Two treatments tested were feeding larvae with exogenous feed and unfed larvae. The initial exogenous feed given was zooplankton rotifers Brachionus rotundiformis. Parameters observed were digestive enzymes activity, including protease, amylase and lipase; absorption of endogenous feed, and larval growth that consisted of total length and body weight. The result indicated that the digestive enzymes activity of unfed larvae were higher than those of fed larvae at 3 days old. Endogenous feed completely absorbed at 3 days old larvae. The total length of larvae was almost similar between the two treatments. In contrast, the body weight of fed larvae tends to be bigger than that of unfed larvae. Based on the results of this study, the initial exogenous feeding influenced digestive enzymes activity and growth of tiger grouper larvae in the early stage.

References

Babaei, S.S., A.A. Kenari, R. Nazari, & E. Gisbert. 2011. Developmental changes of digestive enzymes in Persian sturgeon (Acipenser persicus) during larval ontogeny. Aquaculture, 318: 138-144. https://doi.org/10.1016/j.aquaculture.2011.04.032
Bergmeyer, H.U., M. Grossl, & H.E. Walter. 1983. Reagents for enzymatic analysis. In: H.U. Bergmeyer (ed.) Methods in enzymatic analysis vol. II. 3rd eds. Weinheim. 274-275 pp.
Bolasina, S., A. Pérez, & Y. Yamashita. 2006. Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture, 252: 503-515. https://doi.org/10.1016/j.aquaculture.2005.07.015
Ching, F.F., Y. Nakagawa, K. Kato, & S. Miyashita. 2016. Effects of delayed first feeding on nutritional condition of tiger grouper, Epinephelus fuscoguttatus (Forsskål, 1775) larvae. Aquaculture Reports, 3: 225-228. https://doi.org/10.1016/j.aqrep.2016.04.001
Dabrowski, K. 1984. The feeding of fish larvae: present (state of the art) and perspective. Repro. Nutri. Develop., 24(6): 807-833. https://doi.org/10.1051/rnd:19840701
Dewa. 2017. Tiga jenis ikan ekspor terindikasi ditangkap berlebihan. https://legaleraindonesia.com
Diani, S., B. Slamet, P.T. Imanto, & H. Kohno. 1990. Resorption of endogenous nutrition and initial feeding of the rabbitfish, Siganus javus. Bull. Pen. Perikanan, 1: 83-88.
Diaz, M.V., M.F. Arano, M. Pájaro, E.O. Aristizábal, & G.J. Macchi. 2013. The use of morphological and histological features as nutritional condition indices of Pagrus pagrus larvae. Neotropical Ichthyology, 11(3): 649-660. https://doi.org/10.1590/S1679-62252013000300018
Divya, S.P., T.T.A. Kumar, R. Rajasekaran, & T. Balasubramanian. 2011. Larval rearing of clownfish using Brachionus plicatilis rotifers as starter food. Science Asia, 37: 179-185. https://doi.org/10.2306/scienceasia1513-1874.2011.37.179
Farhoudi, A., A.A. Kenari, V. Chamanara, & A.S. Farsani. 2012. Ontogeny changes in fatty acid and amino acid profiles in yellowfin seabream (Acanthopagrus latus) eggs and larvae. World Journal of Fish and Marine Sciences, 4(3): 290-296. https://doi.org/10.5829/idosi.wjfms.2012.04.03.62152
Frías-Quintana, C.A., G. Márquez-Couturier, C.A. Alvarez-González, D. Tovar-Ramírez, H. Nolasco-Soria, M.A. Galaviz-Espinosa, R. Martínez-García, S. Camarillo-Coop, R. Martínez-Yañez, & E. Gisbert. 2015. Development of digestive tract and enzyme activities during the early ontogeny of the tropical gar Atractosteus tropicus. Fish Physiol. Biochem., 41(5): 1075-91. https://doi.org/10.1007/s10695-015-0070-9
Galaviz, M.A., A. García-Gasca, M. Drawbridge, C.A. Álvarez-González, & L.M. López. 2011. Ontogeny of the digestive tract and enzymatic activity in white seabass, Atractoscion nobilis, larvae. Aquaculture, 318: 162-168. https://doi.org/10.1016/j.aquaculture.2011.05.014
Gao, X-O., Z-F. Liu, C-T. Guan, B. Huang, J-L. Lei, J. Li, Z-L. Guo, Y-H. Wang, & L. Hong. 2017. Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny. Fish Physiol. Biochem., 43(2): 397-409. https://doi.org/10.1007/s10695-016-0295-2
Gawlicka, A.B. Parent, M.H. Horn, N. Ross, I. Opstad, & O.J. Torrissen. 2000. Activity of digestive enzyme in yolk sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture, 184: 303-314. https://doi.org/10.1016/S0044-8486(99)00322-1
Gisbert, E., G. Giménez, I. Fernández, Y. Kotzamanis, & A. Estévez. 2009. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture, 287: 381–387. https://doi.org/10.1016/j.aquaculture.2008.10.039
Gwak, W.S., T. Seikai, & M. Tanaka. 1999. Evaluation of starvation status of laboratory-reared Japanese Flounder Paralichthys olivaceus larvae and juveniles based on morphological and histological characteristics. Fisheries Science, 65(3): 339-346. https://doi.org/10.2331/fishsci.65.339
Hamre, K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifers diets from four different marine fish hatcheries. Aquaculture, 450: 136-142. https://doi.org/10.1016/j.aquaculture.2015.07.016
Hazman, B. & K. Gökçek. 2014. The effect of different first feeds on proteolytic activity of the Northern Pike, Esox lucius Linneaus 1758, Post-Larvae. Turkish Journal of Fisheries and Aquatic Sciences, 14: 875-878. https://doi.org/10.4194/1303-2712-v14_4_04
Imanto, P.T. & R. Melianawati. 2003. Perkembangan awal larva kakap merah Lutjanus sebae. J. Penelitian Perikanan Indonesia, 9(1): 11-19. https://doi.org/10.15578/jppi.9.1.2003.11-19
Johnston, D.J., A.J. Ritar, & C.W. Thomas. 2004. Digestive enzymes profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae. Comparative Biochemistry and Physiology B, 138: 137-144. https://doi.org/10.1016/j.cbpc.2004.02.013
Kailasam, M., A.R. Thirunavukkarasu, S. Selvaraj, & P. Stalin. 2007. Effect of delayed initial feeding on growth and survival of Asian sea bass Lates calcarifer (Bloch) larvae. Aquaculture, 271(1-4): 298-306. https://doi.org/10.1016/j.aquaculture.2007.05.005
Kamarudin, M.S., S. Otoi, & C.R. Saad. 2011. Changes in growth, survival and digestive enzyme activities of Asian redtail catfish, Mystus nemurus, larvae fed on different diets. African Journal of Biotechnology, 10(21): 4484-4493. https://doi.org/10.5897/AJB09.1895
Khoa, T.N.D., V. Waqalevu, A. Honda, K. Shiozaki, & T. Kotani. 2019. Early ontogenetic development, digestive enzymatic activity and gene expression in red sea bream (Pagrus major). Aquaculture, 512: 734283. https://doi.org/10.1016/j.aquaculture.2019.734283
Kohno, H., S. Hara, & Y. Taki. 1986. Early larval development of the seabass Lates calcarifer with emphasis on the transition of energy sources. Bulletin of the Jap. Soc. of Scientific Fisheries, 52(10): 1719-1725. https://www.jstage.jst.go.jp/article/suisan1932/52/10/52_10_1719/_pdf
Kohno, H., S. Diani, P. Sunyoto, B. Slamet, & P.T Imanto. 1990. Early development events associated with changeover of nutrient sources in the grouper, Epinephelus fuscoguttatus, larvae. Bull. Pen. Perikanan, special eds, 1: 51-64.
Kurnia, R., K. Suwardi, I. Muchsin, & M. Boer. 2011. Tangkapan kerapu macan (Epinephelus fuscoguttatus) di Perairan Semak Daun, Kepulauan Seribu. Buletin PSP, 19(3): 277-283. https://journal.ipb.ac.id/index.php/bulpsp/article/view/4162
Kurokawa, T. & T. Suzuki. 1996. Formation of the diffuse pancreas and the development of digestive enzyme synthesis in larvae of the Japanese flounder Paralichthys olivaceus. Aquaculture, 141: 267-276. https://doi.org/10.1016/0044-8486(95)01237-0
Kuz’mina, V.V. & I. L. Golovanova. 2004. Contribution of prey proteinases and carbohydrases in fish digestion. Aquaculture, 234: 347-360. https://doi.org/10.1016/j.aquaculture.2003.11.011
Lahnsteiner, F. 2017. Digestive enzyme system of larvae of different freshwater teleosts and its differentiation during the initial phase of exogenous feeding. Czech J. Anim. Sci., 62(10): 403-416. https://doi.org/10.17221/25/2016-CJAS
Lauff, M. & R. Hoffer. 1984. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture, 37: 335-346. https://doi.org/10.1016/0044-8486(84)90298-9
Lemieux, H., P. Blier, & J.D. Dutil. 1999. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiol. and Biochem., 20: 293-303. https://doi.org/10.1023/A:1007791019523
Linfield, W.M., R.A. Barangkas, L. Sivieri, S. Serota, & R.W. Stevenson. 1984. Enzymatic fat and synthesis. JAOCS, 18(2): 78-87. https://doi.org/10.1007/BF02678767
MacKenzie, B., D. Ueberschär, M. Basford, Heath & A. Gallego. (1999). Diel variability of feeding activity in haddock (Melanogrammus aeglifinus) larvae in the East Shetland area. North Sea Mar. Biol., 135: 361-368. https://doi.org/10.1007/s002270050635
Made, S., S. Fakhriyyah, & A. Darawelalangi. 2017. Analysis of grouper (Epinephelus spp) export contribution to own-source revenue South Sulawesi Province. Journal of economic and social of fisheries and marine, 4(2): 126-134. https://doi.org/10.21776/ub.ecsofim.2017.004.02.02
Martinez-Lagos, R., D. Tovar-Ramirez, V. Gracia-Lopez, & J.P. Lazo. 2013. Changes in digestive enzyme activities during larval development of leopard grouper (Mycteroperca rosacea). Fish Physiol. Biochem., 40(3): 773-85. https://doi.org/10.1007/s10695-013-9884-5
Moguel-Hernández, I., R. Peña, H. Nolasco-Soria, S. Dumas, & I. Zavala-Leal. 2014. Development of digestive enzyme activity in spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) larvae. Fish Physiol. Biochem., 40(3): 839-48. https://doi.org/10.1007/s10695-013-9890-7
Munilla-Moran, R., J.R. Stark, & A. Barbour. 1990. The role of exogenous enzymes in digestion in cultured turbout larvae (Scophthalmus maximus L.). Aquaculture, 88: 337-350. https://doi.org/10.1016/0044-8486(90)90159-K
Naz, M. 2009. Ontogeny of biochemical phases of fertilized eggs and yolk sac larvae of Gilthead Seabream (Sparus aurata L.). Turkish Journal of Fisheries and Aquatic Sciences, 9: 77-83. https://www.trjfas.org/uploads/pdf_732.pdf
Nikhlani, A. & K. Sukarti. 2017. Perkembangan aktivitas enzim pencernaan larva rajungan Portunus pelagicus. Jurnal Ilmu dan Teknologi Kelautan Tropis, 9(2): 443-452. https://doi.org/10.29244/jitkt.v9i2.19280
Novriadi, R. 2019. Mini review: Production and economics analysis of backyard production of tiger grouper Epinephelus fuscoguttatus fingerlings in Situbondo, Indonesia. Jurnal Fishtech, 8(3): 58-71. https://doi.org/10.36706/fishtech.v8i2.8802
O’Brien-MacDonald, K., J.A. Brown, & C.C. Parrish. 2006. Growth, behaviour, and digestive enzyme activity in larval Atlantic cod (Gadus morhua) in relation to rotifer lipid. ICES Journal of Marine Science, 63: 275-284. https://doi.org/10.1016/j.icesjms.2005.11.017
Pedersen, B.H. 1984. The intestinal evacuation rates of larval herring (Clupea harengus L.) predating on wild plankton. Dana, 3: 21-30.
Pedersen, B.H. 1993. Protein digestion in herring Clupea harengus larvae: trypsinogen secretion and effect of a transitory food restriction on mortality, growth and digestive enzyme content. In Walter, B.T. & H.J. Fyhn (ed.). Physiological and biochemical aspect of fish development. 220-225 pp.
Pedersen, B.H., B. Ueberschar, & T. Kurokawa. 2003. Digestive response and rates of growth in pre-leptocephalus larvae of the Japanese eel Anguilla japonica reared on artificial diets. Aquaculture, 215: 321-338. https://doi.org/10.1016/S0044-8486(02)00065-0
Perez-Casanova, J.C., H.M. Murray, J.W. Gallant, N.W. Ross, S.E. Douglas, & S.C. Johnson. 2006. Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture, 251(2-4): 377-401. https://doi.org/10.1016/j.aquaculture.2005.06.007
Pranata, A., Haryati, & M.Y. Karim. 2014. Perkembangan aktivitas enzim pencernaan pada larva ikan bawal bintang (Trachinotus blochii, Lacepede 1801). J. Sains & Teknologi, 14(3): 199-208. http://pasca.unhas.ac.id/jurnal/files/378203d62e9834ac8dba77dab322aaf5.pdf
Rangsin, W., N. Areechon, & R. Yoonpundh. 2012. Digestive enzyme activities during larval development of striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878). Kasetsart J. (Nat. Sci.), 46: 217-228. https://www.thaiscience.info/journals/Article/TKJN/10898172.pdf
Rhodes, K., Y. Sadovy, & M. Samoilys. 2018. Epinephelus fuscoguttatus. The IUCN Red List of Threatened Species. https://www.iucnredlist.org
Ribeiro, L., J.L. Zambonino-Infante, C. Cahu, & M.T. Dinis. 1999. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture, 179: 465-473. https://doi.org/10.1016/S0044-8486(99)00180-5
Rimmer, M.A. & B. Glamuzina. 2017. A review of grouper (Family Serranidae: Subfamily Epinephelinae) aquaculture from a sustainability science perspective. Reviews in Aquaculture, 11: 58-87. https://doi.org/10.1111/raq.12226
Rønnestad, I., W. Koven, A. Tandler, M. Harel, & H.J. Fyhn. 1998. Utilisation of yolk fuels in developing eggs and larvae of European sea bass (Dicentrarchus labrax). Aquaculture, 162(1-2): 157-170. https://doi.org/10.1016/S0044-8486(98)00203-8
Rotllant, G., F.J. Moyano, M. Andrés, A. Estévez, M. Díaz, & E. Gisbert. 2010. Effect of delayed first feeding on larval performance of the spider crab Maja brachydactyla assessed by digestive enzyme activities and biometric parameters. Mar. Biol., 157: 2215-2227. https://doi.org/10.1007/s00227-010-1487-4
Slamet, B. & Tridjoko. 1997. Pengamatan pemijahan alami, perkembangan embrio dan larva ikan kerapu batik, Epinephelus microdon dalam bak terkontrol. J. Penelitian Perikanan Indonesia, 3(4): 40-50. https://doi.org/10.15578/jppi.3.4.1997.40-50
Srichanun, M., C. Tantikitti, V. Vatanakul, & P. Musikarune. 2012. Digestive enzyme activity during ontogenetic development and effect of live feed in green catfish larvae (Mystus nemurus Cuv. & Val.). Songklanakarin Journal of Science and Technology, 34(3): 247-254. https://www.researchgate.net/publication/261511898
Srithongthum, S. H-L. Au, T. Amornsakun, S. Chesoh, S. Jantarat, N. Suzuki, Y. Takeuchi, A. Hassan, G. Kawamura, & L-S. Lim. 2020. Yolk-sac absorption, mouth size development, and first exogenous feeding of Sultan fish, Leptobarbus hoevenii. AACL Bioflux, 13(3): 1320-1327. http://www.bioflux.com.ro/docs/2020.1320-1327.pdf
Subhan, U., Iskandar, Zahidah, & I.M. Joni. 2020. Efficiency yolk sac utilization of endogenous feeding larvae striped catfish (Pangasianodon hypophthalmus) in the environmentally rich Fine Bubbles (FBs). AIP Conference Proceedings 2219, 090003. https://doi.org/10.1063/5.0003079
Sulaeman & R. Fotedar. 2017. Yolk utilization and growth during the early larval life of the Silver Perch, Bidyanus bidyanus (Mitchell, 1838). Int Aquat Res., 9: 107-116 https://doi.org/10.1007/s40071-017-0160-7
Suzer, C., D. Çoban, S. Yildirim, M. Hekimoğlu, H.O. Kamacı, K. Firat, & S. Saka. 2014. Stage-specific ontogeny of digestive enzymes in the cultured common dentex (Dentex dentex) larvae. Turkish Journal of Fisheries and Aquatic Sciences, 14: 759-768. https://doi.org/10.4194/1303-2712-v14_3_18
Tang, U.M., H. Alawi, H. Masjudi, & M. Fauzi. 2020. Development of mouth opening and digestive enzyme activities in sheatfish (Ompok hypopthalmus) larvae. International Journal of Oceans and Oceanography, 14(1): 1-8. https://doi.org/10.37622/IJOO/14.1.2020.1-8
Teles, A., J. Salas-Leiva, C.A. Alvarez-González, & D. Tovar-Ramírez. 2019. Changes in digestive enzyme activities during early ontogeny of Seriola rivoliana. Fish Physiol. Biochem., 45(2): 733-742. https://doi.org/10.1007/s10695-018-0598-6
Yamin, M. & N.N. Palingi. 2007. Aktivitas enzim protease dan kondisi pencernaan di usus ikan kerapu macan (Epinephelus fuscoguttatus) setelah pemberian pakan. Jurnal Riset Akuakultur, 2(2): 281-288. https://doi.org/10.15578/jra.2.2.2007.281-288

Authors

Regina melianawati
regina.melnawati@yahoo.com (Primary Contact)
Rarastoeti Pratiwi
melianawatiR., & PratiwiR. (2022). THE EFFECTS OF INITIAL EXOGENOUS FEED ON DIGESTIVE ENZYMES ACTIVITY AND GROWTH OF Epinephelus fuscoguttatus (Forsskal, 1775) LARVAE. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 14(1), 131-146. https://doi.org/10.29244/jitkt.v14i1.39801

Article Details