OPTIMIZATION OF CELLULASE ENZYME ASSISTED EXTRACTION OF LIPID FROM FRESH Caulerpa lentillifera USING RESPONSE SURFACE METHODOLOGY

  • Ishmah Hanifah Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
  • Fauzia Izzati Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia, Bogor
  • Siti Irma Rahmawati Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia, Bogor
  • Joko Hermanianto Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
  • Puspo Edi Giriwono Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
  • Yatri Hapsari Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia, Bogor
  • Bustanussalam Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia, Bogor
  • Fauzy Rahman Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia, Bogor
  • Eris Septiana Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia, Bogor
  • Partomuan Simanjuntak Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia, Bogor
Keywords: Caulerpa lentillifera, cellulase, enzyme assisted extraction, lipid, RSM

Abstract

Caulerpa lentillifera is one of the most potential green seaweed to explored. It is abundantly available and cultivated in several region in Indonesia. Seaweed is well-known as a low lipid content but it is arranged by polyunsaturated fatty acid. Generally, organic solvent is used for lipid extraction. In an extraction method needs pre-treatment such as enzyme assisted extraction for degrading its cell wall and increasing solvent access to entry the cell. This research was designed to study the optimum condition of lipid enzyme assisted extraction process using cellulase from fresh green macroalga C. lentillifera. The optimization was carried out by Response Surface Methodology (RSM) using Central Composite Design (CCD) model with 15 runs. The aim of this study was to analyze the effect of some independent variables namely enzyme concentrations, hydrolysis temperatures, and hydrolysis times respectively to the dependent variables of lipid content and antioxidant activity. The optimum condition obtained from this experiment was 2% enzyme concentration, 30 °C hydrolysis temperature, and 1 h. The optimum condition could then be verified by making 2 or more replications of the chosen treatment approached the predicted result based on software Design Expert vers. 10 prediction. After methylation, extracted fatty acids were identified as palmitic acid and lauric acid using GC-MS. Extraction optimization enables to explore C. lentillifera’s lipid based on influence factors.

Downloads

Download data is not yet available.

References

Ait-Amir, B., P. Pougnet, & A.E. Hami. 2015. Meta-model development. Embedded Mechatronic Systems 2. Elsevier. Amsterdam. 158 pp.

Almeida, V.M. & S.R. Marana. 2019. Optimum temperature may be a misleading parameter in enzyme characterization and application. Plos ONE, 14(2): 1-8. https://doi.org/10.1371/journal.pone.0212977

Anne-sophie, B., B. Gilles, & B. Nathalie. 2016. Response surface methodology for enzyme-assisted extraction of water- soluble antiviral compounds from the proliferative macroalga Solieria chordalis. Enzyme Engineering, 5(2): 1-8. https://doi.org/10.4172/2329-6674.1000148

Billakanti, J.M., O.J. Catchpole, T.A. Fenton, K.A. Mitchell, & A.D. MacKenzie. 2013. Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol. Process biochemistry, 48(12): 1999-2008. https://doi.org/10.1016/j.procbio.2013.09.015

Boonchum, W., Y. Peerapornpisal, D. Kanjanapothi, J. Pekkoh, C. Pumas, U. Jamjai, & P. Vacharapiyasophon. 2011. Antioxidant activity of some seaweed from the Gulf of Thailand. International J. of Agriculture & Biology, 13(1): 95–99. https://www.fspublishers.org/published_papers/67335_..pdf

Chandini, S.K., P. Ganesan, & N. Bhaskar. 2008. Food chemistry in vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107: 707–713. https://doi.org/10.1016/j.foodchem.2007.08.081

Dahlia, I., S. Rejeki, & T. Susilowati. 2015. Pengaruh dosis pupuk dan substrat yang berbeda terhadap pertumbuhan Caulerpa lentillifera. J. of Aquaculture Management and Technology, 4(4): 28–34. https://ejournal3.undip.ac.id/index.php/jamt/article/view/9802

Dangeubun, J.L. & E.M.Y. Kadmaer. 2018. Penerapan iptek di Desa Wab Ngufar untuk manajemen budidaya makroalga hijau Caulerpa racemosa dan Caulerpa lentillifera “LAT”. Majalah Aplikasi Ipteks Ngayah, 9(2): 246-258. https://e-journal.unmas.ac.id/index.php/ngayah/article/view/200

Deslandes, E., V. Stiger-Pouvreau, & N. Bourgougnon. 2016. Carbohydrates from seaweeds. In: Fluerence, J. and I. Levine (eds.). Seaweed in health and disease prevention. Academic Press. Cambridge. 255 pp.

Duongbia, N., S. Chaiwongsar, C. Chaichana, & S. Chaiklangmuag. 2018. Acidic hydrolysis performance and hydrolyzed lipid characterizations of wet Spirulina platensis. Biomas Conversion and Biorefinery, 9: 305-319. https://doi.org/10.1007/s13399-018-0350-6

Dutka, M., M. Ditaranto, & T. Lovas. 2015. Application of a central composite design for the study of NOx emission performance of a low NOx burner. Energies, 8(5): 3606-3627. https://doi.org/10.3390/en8053606

Fiset, C., J. Liefer, A.J. Irwin, & Z.V. Finkel. 2017. Methodological biases in estimates of macroalgal macromolecular composition. Limnology and Oceanography, 15: 618–630. https://doi.org/10.1002/lom3.10186

Fitriana, W.D., S. Fatmawati, & T. Ersam. 2015. Uji aktivitas antioksidan terhadap DPPH dan ABTS dari fraksi-fraksi daun kelor (Moringa oleifera). Prosiding Simposium Nasional dan Pembelajaran Sains, 8 dan 9 Juni 2015. 657–660 hlm.

Ganesan, P., C.S. Kumar, & N. Bhaskar. 2008. Antioxidant properties of methanol extract and its solvent fractions obtained from selected indian red seaweeds. Bioresource Technology, 99: 2717–2723. https://doi.org/10.1016/j.biortech.2007.07.005

Gao, Y., M. Yang, & C. Wang. 2013. Bioresource technology nutrient deprivation enhances lipid content in marine microalgae. Bioresource Technology, 147: 484–491. https://doi.org/10.1016/j.biortech.2013.08.066

Ghazal, M.A., H.A.H Ibrahim, N.A. Shaltout, & A.E. Ali. 2016. Biodiesel and bioethanol production from Ulva fasciata delie biomass via enzymatic pretreatment using marine-derived Aspergillus niger. Int. J. Pure App. Bioscience, 4(5): 1–16. https://doi.org/10.18782/2320-7051.2374

Puspitasari, G., W. A. Safrihatini, & K. Umam. 2019. Studi kinetika reaksi dari enzim α-amilase pada proses penghilangan kanji kain kapas. Arena Tekstil, 34(1): 1-6. https://doi.org/10.31266/at.v34i1.5091042 7

Ginneken, V.J.T. van, J.P.F.G. Helsper, W. de Visser, H. van Keulen, & W.A. Brandenburg. 2011. Polyunsaturated fatty acids in various macroalgal species from north atlantic and tropical seas. Lipids in Health and Disease, 10(1): 104-112. https://doi.org/10.1186/1476-511X-10-104

Guerra, N.P. 2017. Enzyme kinetics experiment with the multienzyme complex viscozyme L and two substrates for the accurate determination of michaelian parameters. J. Chem. Educ., 94(6): 795-799. https://doi.org/10.1021/acs.jchemed.6b00351

Haryanto, M.G., S. Setyahadi, M. Sahlan, M. Yohda, Y. Fukutani, E.A. Suryono, & Misri. 2018. Characterization of cellulase from E. coli BPPTCC-EGRK2. Consortium Studies of Smallholder Palm Oil International Conference, Sarawak, Malaysia, 9 Juli-11 Juli 2018. 1660-1666 pp. https://doi.org/10.1051/e3sconf/20185200024

Iqbal, H.M.N., I. Ahmed, M.A. Zia, & M. Irfan. 2011. Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Advances in Bioscience and Biotechnology, 2 (3): 149–156. https://doi.org/10.4236/abb.2011.23024

Islam, F. & N. Roy. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Research Notes, 11(1): 1–6. https://doi.org/10.1186/s13104-018-3558-4

Iwundu, M.P. 2018. Construction of modified central composite design for non-standard models. Int. J. of Statistics and Probability, 7(5): 95-119. https://doi.org/10.5539/ijsp.v7n5p95

Kementrian Kelautan dan Perikanan (KKP). 2019. Pedoman umum pembudidayaan rumput laut. Nomor 1/KEPMEN-KP/2019. KKP. Jakarta. 4-5 hlm.

Lai, Y.J.S., F. De Francesco, A. Aguinaga, P. Parameswaran, & B.E. Rittmann. 2016. Improving lipid recovery from Scenedesmus wet biomass by surfactant-assisted disruption. Green Chemistry, 18(5): 1319-1326. https://doi.org/10.1039/C5GC02159F

Liang, K., Q. Zhang, & W. Cong. 2012. Enzyme-assisted aqueous extraction of lipid from microalgae. J. of Agricultural and Food Chemistry, 60(47): 11771–11776. https://doi.org/10.1021/jf302836v

Lin, Y., X. Xie, B. Yuan, J. Fu, L. Liu, H. Tian, & D. He. 2018. Optimization of enzymatic cell disruption for improving lipid extraction from Schizochytrium sp. through response surface methodology. J. of Oleo Science, 67(2): 215-224. https://doi.org/10.5650/jos.ess17166

Lone, M.A., S. Sahay, R. Rana, M.A. Rather, F.A. Dar, F.A. Maila, & M.A. Reshi. 2014. Kinetic determining innovations of carboxymethyl cellulase enzyme isolated from Trichophyton terrestre in carboxymethyl cellulose solution. Discovery J., 24(84):110-117. http://www.discoveryjournals.org/discovery/current_issue/v24/n80-85/A16.pdf?

Loneman, D.M., L. Peddicord, A. Al-rashid, J. Nikolau, N. Lauter, & M.D. Yandaeau-Nelson. 2017. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize. Plos ONE, 12(7): 1-21. https://doi.org/10.1371/journal.pone.0180850

Maciel, E., M.C. Leal, A.I. Lillebø, P. Domingues, M.R. Domingues, & R. Calado. 2016. Bioprospecting of marine macrophytes using ms-based lipidomics as a new approach. Marine Drugs, 14(49): 1–28. https://doi.org/10.3390/md14030049

Maftukhah, S. & Abdullah. 2018. Cellulase enzyme production from rice straw using solid state fermentation and fungi Aspergillus niger ITBCC L74. The 24th Regional Symposium on Chemical Engineering, Semarang, Indonesia, 15-16 November 2017. 1-7 pp. https://doi.org/10.1051/matecconf/201815601010

Matanjun, P. & K. Muhammad. 2010. Comparison of cardiovascular protective effect of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum on High-Cholesterol/High-Fat Diet in Rats. J. of Medicinal Food, 13(4): 1–10. https://doi.org/10.1089/jmf.2008.1212

Michalak, I., A. Dmytryk, A. Smieszek, & K. Marycz. 2017. Chemical characterizaton of Enteromorpha prolifera extract obtained by enzyme-assisted extrction an its influence on the metabolic activity of Caco-2. International J. of Molecular Science 18(3): 1-20. https://doi.org/10.3390/ijms18030479

Mubarak, M., A. Shaija, & T.V. Suchithra. 2016. Optimization of lipid extraction from Salvinia molesta for biodiesel production using RSM and its FAME Analysis. Environmental Science and Pollution Research, 23: 14047–14055. https://doi.org/10.1007/s11356-016-6343-8

Nguyen, V.T., J.P. Ueng, & G.J. Tsai. 2011. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J. of Food Science, 76(7): 950–958. https://doi.org/10.1111/j.1750-3841.2011.02289.x

Orr, V.C.A., N.V. Plechkova, K.R. Seddon, & L. Rehmann. 2015. Disruption and wet extraction of the microalgae chlorella vulgaris using room-temperature ionic liquids. ACS Sustainable Chemistry and Engineering, 4(2): 591-600. https://doi.org/10.1021/acssuschemeng.5b00967

Peraturan Presiden (Perpres). 2019. Peta Panduan (Road Map) Pengembangan industri rumput laut nasional tahun 2018-2021. Peraturan Presiden Republik Indonesia Nomor 33 Tahun 2019, Indonesia.

Pishgar-komleh, S., A. Keyhani, M. Mostofi-Sarkari, & A. Jafari. 2012. Application of response surface methodology for optimization of picker- husker harvesting losses in corn seed. Iranica J. of Energy & Environment, 3(2): 134–142. https://doi.org/10.5829/idosi.ijee.2012.03.02.0027

Prakoso, F.D., F. Lestari, & T. Apriadi. 2019. Jenis dan sebaran makroalga di perairan Pulau Beralas Bakau Kecematan Gunung Kijang Kabupaten Bintan. J. Perikanan dan Kelautan, 9(2): 235-245. https://doi.org/10.33512/jpk.v9i2.7357

Ranade, S.S. & P. Thiagarajan. 2017. Selection of a design for response surface. Material Science and Engineering, 263(2): 022043. https://doi.org/10.1088/1757-899X/263/2/022043

Razai, T.S., I.P. Putra., F. Idris, T. Febrianto, M. Firdaus. 2019. Identifikasi, keragaman, dan sebaran Caulerpa sp. sebagai komoditas potensial budidaya Pulau Bunguran, Natuna. Simbiosam, 8(2): 168-178. https://doi.org/10.33373/sim-bio.v8i2.2177

Réblová, Z. 2012. Effect of Temperature on the antioxidant activity of phenolic acids. Czech J. Food Sci., 30(2): 171–177. https://doi.org/10.17221/57/2011-CJFS

Reddy, A. & A.B. Majumder. 2014. Use of a Combined technology of ultrasonication, three-phase partitioning, and aqueous enzymatic oil extraction for the extraction of oil from Spirogyra sp. J. of Engineering Hindawi, 2014(2): 1-6. https://doi.org/http://doi.org/10.1155/2014/740631

Rheem, S., I. Rheem, & S. Oh. 2017. Response surface methodology using a fullest balanced model: a re-analysis of a dataset in the korean journal for food science of animal resources. Korean J. for Food Science of Animal Resources, 37(1): 139-146. https://doi.org/10.5851/kosfa.2017.37.1.139

Sanjeewa, K.K.A., W. Lee, & Y. Jeon. 2018. Nutrients and bioactive potentials of edible green and red seaweed in korea. Fisheries and Aquatic Sciences, 21(19): 1–11. https://doi.org/10.1186/s41240-018-0095-y

Saropah, D.A., A. Jannah, & A. Maunatin. 2012. Kinetika reaksi enzimatis ekstrak kasar enzim selulase bakteri selulolitik hasil isolasi dari bekatul. Alchemy, 2(1): 35–45. https://doi.org/10.18860/al.v0i0.2297

Shahidi, F. & P. Wanasundara. 2008. Food Lipids. Third Edition. CRC Press. 126-127 pp.

Sivaramakrishnan, T., S. Swain, K.R.K.S. Saravanan, S.D. Roy, L. Biswas, & B. Shalini. 2017. In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from south andaman coast of india. Turkish J. of Fisheries and Aquatic Sciences, 17: 639–648. https://doi.org/10.4194/1303-2712-v17_3_20

Sugiyono. 2015. Metode Penelitian Manajemen (Edisi Keempat). Alfabeta. Bandung. 51 p.

Supriadi, S., R. Syamsuddin, A. Abustang, & I. Yasir. 2016. Pertumbuhan dan kandungan karotenoid lawi-lawi Caulerpa racemosa yang ditumbuhkan pada tipe substrat berbeda. J. Rumput Laut Indonesia, 1(2): 117-122. https://journal.indoseaweedconsortium.or.id/index.php/jrli/article/view/28/25

Synytsya, A., W.J. Kim, & Y.I. Park. 2015. Cell wall polysaccharides of marine algae. Marine Alga Biotechnology. Springer. Berlin. 543 p. https://doi.org/10.1007/978-3-642-53971-8

Terme, N., R. Boulho, J.P. Kucma, N. Bourgougnoun, & G. Bedoux. 2018. Radical scavenging activity of lipids from seaweeds isolated by solid-liquid extraction and supercritica fluids. Oilseeds and fats crops and lipids, 25(5): 1-6. https://doi.org/10.1051/ocl/2018054

Vanhercke, T., A.E. Tahchy, Q. Liu, & J.R. Petrie. 2014. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnology J., 12(2): 231-239. https://doi.org/10.1111/pbi.12131

Wijesinghe, W.A.J.P. & Y. Jeon. 2012. Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia, 83(1): 6–12. https://doi.org/10.1016/j.fitote.2011.10.016

Yarnpakdee, S., S. Benjakul, & T. Senphan. 2018. Antioxidant activity of the extracts from freshwater macroalgae (Cladophora glomerata) grown in northern thailand and its preventive effect against lipid oxidation of refrigerated eastern little tuna slice. Turkish J. of Fisheries and Aquatic Sciences, 19(3): 209–219. https://doi.org/10.4194/1303-2712-v19_3_04

Yingyao, W., W. Zhang, C. Shangwei, & H. Fei. 2008. Aqueous enzymatic extraction of oil and protein hydrolysates from peanut. Food Sci. Technol. Res., 14(6): 533–540. https://doi.org/10.3136/fstr.14.533

Yogyaswari, S.A., M.G.I. Rukmi, & B. Raharjo. 2016. Eksplorasi bakteri selulolitik dari cairan rumen sapi peranakan fries holland (PFH) dan limousine peranakan ongole (limpo). J. Biologi, 5(4): 70-80. https://ejournal3.undip.ac.id/index.php/biologi/article/view/19516/18508

You, J., C. Peng, X. Liu, X. Ji, J. Lu, Q. Tong, & Z. Li. 2011. Bioresource technology enzymatic hydrolysis and extraction of arachidonic acid rich lipids from Mortierella alpina. Bioresource Technology, 102(10): 6088–6094. https://doi.org/10.1016/j.biortech.2011.01.074

Zhang, M., Y. Ma, X. Che, Z. Huang, P. Chen, G. Xia, & M. Zhao. 2020. Comparative analysis of nutrient composition of Caulerpa lentillifera from different regions. J. Ocean Univ. China, 19(2): 1-7. https://doi.org/10.1007/s11802-020-4222-x

Published
2021-04-30
How to Cite
Hanifah, I., Izzati, F., Rahmawati, S. I., Hermanianto, J., Giriwono , P. E., Hapsari , Y., Bustanussalam, Rahman , F., Septiana , E., & Simanjuntak , P. (2021). OPTIMIZATION OF CELLULASE ENZYME ASSISTED EXTRACTION OF LIPID FROM FRESH Caulerpa lentillifera USING RESPONSE SURFACE METHODOLOGY. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 13(1), 19-37. https://doi.org/10.29244/jitkt.v13i1.32654