Main Article Content

Abstract

Bedadung river is one of the biggest rivers that passes through Jember Region, East Java, Indonesia. Due to land uses caused by surrounding civilization, many of drainage channels throw in nonpoint source pollutants from industrial, domestic, and agricultural activities to river. DO and BOD are two of most important parameters reflecting ecological health of river. BOD reflects the number of organik pollutant contained water. DO concentration is controlled by a number of physical, chemical and biological processes, such as deoxygenation and reoxygenation. The aim of this research to analyze deoxygenation and reoxygenation rates of Bedadung River segment Tamansari and Lojejer villages, Jember. The primary data were obtained by measuring of stream flow and water quality parameters (temperature, DO and BOD) at 4 observed stations (BDG01, BDG02, BDG03, and BDG04). The result showed that stream flow was 6.466 m3/det, and its water quality such as DO 7.008 mg/L dan BOD 0.928 mg/L. The values of deoxygenation and reoxygenation rate were 0.975 mg/L.day and 1.051 mg/L.day, sequentially. The reoxygenation rate value was higher than deoxygenation value, concluded that Bedadung stream was able to increase its dissolve oxygen content and attempt self purification.

Keywords

BOD DO deoxygenation reoxygenation

Article Details

References

  1. Abowei, J. F. N. 2010. Salinity, Dissolved Oxygen, pH and Surface Water Temperature Conditions in Nkoro River, Niger Delta, Nigeria. Advance Journal of Food Science and Technology, 2(1), 36–40.
  2. Agustiningsih, D., S. B. Sasongko, dan Sudarno. 2012. Analisis Kualitas Air dan Strategi Pengendalian Pencemaran Air Sungai Blukar Kabupaten Kendal. Jurnal Presipitasi, 9(2), 64–71.
  3. Al Idrus, S. W. 2014. Analisis Pencemaran Air Menggunakan Metode Sederhana Pada. Paedagoria, 10(2), 8–14.
  4. APHA, AWS, dan WEF. 2005. Standard Methods for The Examination of Water and Wastewater. Washington DC: American Public Health Association, American Water Works Assocation, Water Environtment Federation.
  5. Arbie, R. R., W. D. Nugraha, dan Sudarno. 2015. Studi Kemampuan Self Purification pada Sungai Progo Ditinjau dari Parameter Organik DO dan BOD (Point Source: Limbah Sentra Tahu Desa Tuksono, Kecamatan Sentolo, Kabupeten Kulonprogo, Provinsi D.I. Yogyakarta. Jurnal Teknik Lingkungan, 4(3), 1–15.
  6. Astono, W. 2010. Penetapan Nilai Konstanta Dekomposisi Organik ( Kd ) Dan Nilai Konstanta Reaerasi (Ka) pada Sungai Ciliwung Hulu-Hilir. Jurnal EKOSAINS, II(1), 40–45.
  7. Barakat, A., M. El-Baghdadi, J. Rais, B. Aghezzaf, dan M. Slassi. 2016. Assessment of Spatial and Seasonal Water Quality Variaton of Oum Er Rbia River (Morocco) using Multivariate Statistical Techniques. International Soil and Water Conservation Research, 4, 284–292.
  8. BPS. 2018. Kabupaten Jember dalam Angka 2018. Jember: Badan Pusat Statistik Kabupaten Jember.
  9. BSN. 2008. SNI 6989.57:2008 Mengenai Air dan Air Limbah-Bagian 57:Metode Pengambilan Contoh Air Permukaan.
  10. BSN. 2015. SNI 8066:2015 Tata Cara Pengukuran Debit Aliran Sungai dan Saluran Terbuka Menggunakan Alat Ukur Arus dan Pelampung. Jakarta: Badan Standarisasi Nasional.
  11. BSNI. 2008a. SNI 6989-14: Cara Uji Oksigen Terlarut dengan Yodometri (Modifikasi Azida). Jakarta: Badan Standarisasi Nasional.
  12. BSNI. 2008b. SNI 6989-23: Cara Uji Suhu dengan Termometer. Jakarta: Badan Standarisasi Nasional.
  13. Effendi, H. 2003. Telaah Kualitas Air bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Yogyakarta: Kanisius.
  14. Haider, H., W. Ali, dan S. Haydar. 2013. A Review of Dissolved Oxygen and Biochemical Oxygen Demand Models for Large Rivers. Pakistan Journal of Engineering and Applied Sciences, 12, 127–142.
  15. Harsono, E. 2010. Evaluasi Kemampuan Pulih Diri Oksigen Terlarut Air Sungai Citarum Hulu. Jurnal LIMNOTEK, 17(1), 17–36.
  16. Hendriarianti, E., dan N. Karnaningroem. 2015. Deoxygenation Rate of Carbon in Upstream Brantas River in the City of Malang. Journal of Applied Environmental and Biological Sciences, 5(12), 36–41.
  17. Huboyo, H. S., dan B. Zaman. 2007. Analisis Sebaran Temperatur dan Salinitas Air Limbah PLTU-PLTGU Berdasarkan Sistem Pemetaaan Spasial (Studi Kasus: PLTU-PLTG Tambak Lorok Semarang). Jurnal Presipitasi, 3(2), 40–45.
  18. Hydroscience. 1971. Simplified Mathematical Modelling of Water Quality prepared for the Mitre Corporation and the US Environmental Protection Agency A, Water Programs, Washington, D .C. New Jersey.
  19. Jouanneau, S., L. Recoules, M. J. Durand, A. Boukabache, V. Picot,, Y. Primault, dan G. Thouand. 2013. Methods for Assessing Biochemical Oygen Demand (BOD): A Review. Water Research, 49, 62–82.
  20. Keputusan Menteri Negara Linkungan Hidup Nomor 110 Tahun 2003. 2003. Pedoman Penetapan Daya Tampung Beban Pecemaran Air pada Sumber Air. 27 Juni 2003. Menteri Negara Lingkungan Hidup. Jakarta: Deputi I MENLH Bidang Kebijakan dan Kelembagaan Lingkungan Hidup.
  21. Kordi, M. G. H., dan A. B. Tancung. 2007. Pengelolaan Kualitas Air dalam Budidaya Perairan. Jakarta: Rineka Cipta.
  22. Lee, C. C., & S. D. Lin. 2007. Handbook of Environmental Engineering Calculations (2nd editio). New York: The McGraw-Hill Companies, Inc.
  23. Mahyudin, Soemarno, dan T. B. Pragyo. 2015. Analisis Kualitas Air Dan Strategi Pengendalian Pencemaran Air Sungai Metro di Kota Kepanjen Kabupaten Malang. J-PAL, 6(2), 2105–2114.
  24. Metcalf dan Eddy. 2004. Wastewater Engineering: Treatment and Reuse, 4th edition. New York, US: The McGraw-Hill Companies, Inc.
  25. Nuruzzaman, M., A. Al-Mamun, dan M. N. B. Salleh. 2018. A Modified Laboratory Approach to Determine Reaeration Rate for River Water. Arabian Journal for Science and Engineering, 43(4), 2037–2051.
  26. Suriadarma, A. 2011. Dampak Beberapa Parameter Faktor Fisik Kimia terhadap Kualitas Lingkungan Perairan Wilayah Pesisir Karawang Jawa Barat. Riset Geologi Dan Pertambangan, 21(2), 21–36.
  27. Ughbebor, J. N., J. C. Agunwamba, dan V. E. Amah. 2012. Determination of Reaeration Coefficient K2 for Polluted Stream as A Function of Depth, Hydraulic Radius, Temperatur, and Velocity. Nigerian Journal of Hydrology, 31(2), 1750180.
  28. Yogafanny, E. 2015. Pengaruh Aktivitas Warga di Sempadan Sungai terhadap Kualitas Air Sungai Winongo. Jurnal Sains Dan Lingkungan, 7(1), 41–50.
  29. Yustiani, Y. M., H. Pradiko, dan R. H. Amrullah. 2018. The Study of the Deoxygenation Rate of Rangku River Water during Dry Season. International Journal of GEOMATE, 15(47), 164–169.
  30. Yustiani, Y. M., S. Wahyuni dan M. R. Alfian. 2018. Investigation on the deoxygenation rate of water of cimanuk river, Indramayu, Indonesia. Rasayan Journal of Chemistry, 11(2), 475–481.