Synthesis of Geopolymer-Zeolite Granule Composite from Local Raw Materials Using the Hydrothermal Method as Methylene Blue Adsorbent
Abstract
Zeolite is known as a cation exchange adsorbent and has high adsorption capabilities. These two functions of zeolite have the opportunity to be a solution in dealing with cationic dye waste. The aim of this research was to determine the CEC value and adsorption capacity of zeolite in adsorbing methylene blue. Zeolite powder is made using local metakaolin and added NaOH or water glass using the hydrothermal method. The powdered zeolite product obtained was mixed with geopolymer to form a composite of small granules and large granules. The results of XRD characterization of the synthetic product obtained from a mixture of metakaolin and NaOH were NaA zeolite, while the addition of water glass resulted in NaX zeolite. Zeolite in powder form or geopolymer-zeolite granule composite shows a high cation exchange capacity (CEC) above 200 cmol/kg. The methylene blue adsorption test on each adsorbent showed that the adsorption capacities of NaA zeolite, NaX zeolite, NaA geopolymer-zeolite small granule and large granule composites, and NaX geopolymer-zeolite small granule and large granule composites were respectively 30.81 mg g-1, 32.84 mg g-1, 53.29 mg g-1, 51.64 mg g-1, 38.32 mg g-1, 54.22 mg g-1 and 48.81 mg g-1.
Downloads
References
Abidin, Z., V. Prajaputra, S. Budiarti, D.T. Suryaningtyas, N. Matsue and M. Sakakibara. 2020. Effect of Alkaline Concentrations on the Synthesis of Volcanic Soil-Based Zeolite for Methylene Blue Removal by Fenton-Like Oxidation Process. Revista de Chimie (Rev. Chim.), 71(12): 47–55.
Breck, D.W. 1964. ‘Crystalline Molecular Sieves’. Journal of Chemical Education, 41(12): 678–89.
Catauro, M., F. Papale, G. Lamanna and F. Bollino. 2015. Geopolymer/PEG Hybrid Materials Synthesis and Investigation of the Polymer Influence on Microstructure and Mechanical Behavior. Materials Research, 18(4): 698–705.
Cusioli, L.F., H.B. Quesada, A.T.A. Baptista, R.G. Gomes and R. Bergamasco. 2019. Soybean Hulls as a Low-Cost Biosorbent for Removal of Methylene Blue Contaminant. Environmental Progress & Sustainable Energy, 39(2): ep.13328.
Gonçalves, D.K.C., S.L.B. Lana, R.B.C. Sales, and M.T.P. Aguilar. 2022. ‘Study of Metakaolins with Different Amorphities and Particle Sizes Activated by KOH and K2SiO3’. Case Studies in Construction Materials, 16(November 2021): e00778. https://doi.org/10.1016/j.cscm.2021.e00778.
Guo, X., X. Cui and H. Li. 2020. Effects of Fillers Combined with Biosorbents on Nutrient and Heavy Metal Removal from Biogas Slurry in Constructed Wetlands. Science of the Total Environment, 703: 134788. https://doi.org/10.1016/j.scitotenv.2019.134788.
Haryono. 2021. Kinerja Metode Elektroflotasi Pada Pengolahan Air Limbah Pewarna Tekstil Dispersi. Jurnal Ilmu dan Inovasi Fisika, 5(2): 105–15.
Kabwadza-Corner, P., M.W. Munthali, E. Johan and N. Matsue. 2014. Comparative Study of Copper Adsorptivity and Selectivity toward Zeolites. American Journal of Analytical Chemistry, 05(07): 395–405.
Kemenperin. 2022. 100 Tahun Industri Tekstil, Momentum Tingkatkan Kinerja Industri TPT. Diakses 17 November 2023 dari https://kemenperin.go.id/artikel/23427/Kemenperin:-100-Tahun-Industri-Tekstil-Momentum-Tingkatkan-Kinerja-Industri-TPT
Król, M. 2020. Natural vs. Synthetic Zeolites. Crystals, 10(7): 1–8.
Lellis, B., C.Z. Fávaro-Polonio, J.A. Pamphile, and J.C. Polonio. 2019. ‘Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms’. Biotechnology Research and Innovation, 3(2): 275–90.
Maia, A.Á.B., R.N. Dias, Rômulo S. Angélica, and R.F. Neves. 2019. Influence of an Aging Step on the Synthesis of Zeolite NaA from Brazilian Amazon Kaolin Waste. Journal of Materials Research and Technology, 8(3): 2924–29. https://doi.org/10.1016/j.jmrt.2019.02.021.
Munthali, M.W., M.A. Elsheikh, E. Johan and N. Matsue. 2014. Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites. Molecules, 19(12): 20468–81.
Nasief, F.M., M. Shaban, K.A. Alamry, M.R.A. Khadra, A.A.P. Khan, A.M. Asiri, H.M.A. El-Salam. 2021. Hydrothermal Synthesis and Mechanically Activated Zeolite Material for Utilizing the Removal of Ca/Mg from Aqueous and Raw Groundwater. Journal of Environmental Chemical Engineering, 9(5): 105834. https://doi.org/10.1016/j.jece.2021.105834.
Novais, R.M., J. Carvalheiras, D.M. Tobaldi, M.P. Seabra, R.C. Pullar and J.A. Labrincha. 2019. Synthesis of Porous Biomass Fly Ash-Based Geopolymer Spheres for Efficient Removal of Methylene Blue from Wastewaters. Journal of Cleaner Production 207: 350–62. https://doi.org/10.1016/j.jclepro.2018.09.265.
Nowak, P., B. Muir, A. Solinska, M. Franus and T. Bajda. 2021. Synthesis and Characterization of Zeolites Produced from Low-Quality Coal Fly Ash and Wet Flue Gas Desulphurization Wastewater. Materials, 14(6): 1558.
Papa, E., V. Medri, S. Amari, J. Manaud, P. Benito, A. Vaccari and E. Landi. 2017. Zeolite-Geopolymer Composite Materials: Production and Characterization. Journal of Cleaner Production, 171: 76-84.
Prajaputra, V. 2019. Pengembangan Material dari Tanah Abu Vulkanik Sebagai Penjerap dan Pendegradasi Biru Metilena. IPB University.
Rożek, P., M. Król and W. Mozgawa. 2019. Geopolymer-Zeolite Composites: A Review. Journal of Cleaner Production, 230: 557–79.
Salam, M.A., M. Mokhtar, S.M. Albukhari, D.F. Baamer, L. Palmisano, A.A. Al-Hammadi ands M.R. Abukhadra. 2021. Synthesis of Zeolite/Geopolymer Composite for Enhanced Sequestration of Phosphate (PO43−) and Ammonium (NH4+) Ions ; Equilibrium Properties and Realistic Study. Journal of Environmental Management, 300(September): 113723.
Salam, M.A., M.R. Abukhadra and M. Mostafa. 2020. Effective Decontamination of As(V), Hg(II), and U(VI) Toxic Ions from Water Using Novel Muscovite/Zeolite Aluminosilicate Composite: Adsorption Behavior and Mechanism. Environmental Science and Pollution Research, 27(12): 13247–60.
Sanguanpak, S., A. Wannagon and C. Saengam. 2021. Porous Metakaolin-Based Geopolymer Granules for Removal of Ammonium in Aqueous Solution and Anaerobically Pretreated Piggery Wastewater. Journal of Cleaner Production, 297: 126643. https://doi.org/10.1016/j.jclepro.2021.126643.
Saukani, M., I. Sholehah, S. Arief and S. Husein. 2020. Karakterisasi Stabilitas Termal Kaolin Tatakan Kalimantan Selatan Jurnal Fisika dan Aplikasinya, 16(1): 29.
Setiadi, A. 2016. Sintesis Zeolit dengan Kandungan Si/Al Rendah dari Kaolin Menggunakan Metode Peleburan dan Hidrotermal. Indonesian Journal of Chemical Science, 5(3): 164–68.
Trivana, L., S. Sugiarti and E. Rohaeti. 2015. Sintesis Zeolit dan Komposit Zeolit TiO2 dari Kaolin serta Uji Adsorpsi-Fotodegradasi Biru Metilena. 11(2): 147–62.
Wasielewski, S., E. Rott, R. Minke and H. Steinmetz. 2018. Evaluation of Different Clinoptilolite Zeolites as Adsorbent for Ammonium Removal from Highly Concentrated Synthetic Wastewater. Water (Switzerland), 10(5): 1–17.
Yagub, M.T., T.K. Sen, S. Afroze and H.M. Ang. 2014. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Advances in Colloid and Interface Science, 209: 172–84. http://dx.doi.org/10.1016/j.cis.2014.04.002.
Yu, S., S. Kwon and K. Na. 2018. Synthesis of LTA Zeolites with Controlled Crystal Sizes by Variation of Synthetic Parameters: Effect of Na+ Concentration, Aging Time, and Hydrothermal Conditions. Journal of Sol-Gel Science and Technology, 98(2): 411–21. http://dx.doi.org/10.1007/s10971-018-4850-4
Copyright (c) 2024 Jurnal Ilmu Tanah dan Lingkungan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Department of Soil Science and Land Resources Departemen Ilmu Tanah dan Sumberdaya Lahan, Faculty of Agriculture Fakultas Pertanian, IPB University