Spectral Response of Maize Canopy to Several Fertilization Treatments

Respon Spektral Tajuk Jagung pada beberapa Perlakuan Pemupukan

  • Muhammad Ardiansyah Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Budi Nugroho Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Arival Al-Fajar Program Studi Manajemen Sumberdaya Lahan, Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
Keywords: Spectral characteristic, spectroradiometer, zea mays L

Abstract

Early detection of plant nutrient status during the maize cycle is important to prevent yield loss and to optimize yield and quality. This study was conducted to analyze the spectral response of the maize canopy to 10 fertilization treatments including control using a spectroradiometer. In this study, the relationship between nutrient content and spectral response was focused on leaf N levels, which were analyzed at 4 and 8 weeks after planting (WAP). Simple and multiple linear regression models were developed to study this relationship, both models based on wavelength spectrum and selected wavelength to see the relationship between spectral reflectance and leaf N content. In general, the spectral response pattern of maize canopy for each treatment at 4 and 8 WAP was similar, where the reflectance of 4 WAP being lower than 8 WAP for all wavelengths. Leaf N levels could be identified at the green wavelength of 555 nm, which was indicated by the lowest reflectance at 4 WAP and high at 8 WAP for treatment of 1 standard (STD) or the highest N dose. The low reflectance of the 555 nm wavelength of this treatment indicated that the N content in the leaves was higher at 4 WAP than 8 WAP. The red, green, and red-edge wavelengths at 4 WAP and 8 WAP showed a moderate to very strong relation with leaf N content with a coefficient of determination (R2) greater than 0.40. The very strong model was shown by the multiple regression model between the combination of blue, green, red, red-edge, and near-infrared spectrum for leaf N levels for both 4 WAP and 8 WAP. The selected wavelength-based model found that the relationship was very strong shown by the wavelength of 671 nm.

Downloads

Download data is not yet available.

References

Albayrak, S. 2008. Use of reflectance measurements for the detection of N, P, K, ADF and NDF contents in sainfoin pasture. Sensors, 8(11): 7275–7286.

Bajwa, S.G., A.R. Mishra and R.J. Norman. 2010. Canopy Reflectance Response to Plant Nitrogen Accumulation in Rice. Precision Agric., 11: 488-506.

Blackmer, T.M., J.S. Schepers, E.A.W. Shea and G.E. Varvel. 1996. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Journal Agron., 88: 1-5.

Chang, K.W., J.C. Lo and Y. Shen. 2005. Predicting rice yield using canopy reflectance measured at booting stage. Agronomy Journal, 97: 872-878.

[EKO] EKO Instruments. 2016. Instruction Manual: Portable Spectroradiometer. EKO Instruments CO., Ltd. Tokyo, Japan.

Huang, W.J., D.W. Lamb, Z. Niu, Y.J. Zhang, L.Y. Liu and J.H. Wang. 2007. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8(4-5): 187–197.

[KEMENTAN] Kementrian Pertanian Republik Indonesia. 2021. Inilah 10 Provinsi Produsen Jagung Terbesar Indonesia. https://www.pertanian.go.id/home/?show=news&act=view&id=4639#:~:text=Berdasarkan%20laporan%20prognosa%20penghitungan%20Pusat,mencapai%205%2C16%20juta%20ha.

Leghari, S.J., N.A. Wahocho, G.M. Laghari, L.A. Hafeez, B.G. Mustafa, T.K. Hussain and A.A. Lashari. 2016. Role of Nitrogen for Plant Growth and Development: A review. Advances in Environmental Biology, 10(9): 209-218.

Li, F., Y. Miao, G. Feng, F. Yuan, S. Yue, X. Gao, Y. Liu, B. Liu, S.L. Ustin, and X. Chen. 2014. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res., 157: 111–123.

Lihiang, A. dan S. Lumingkewas. 2020. Efisiensi Waktu Pemberian Pemupukan Nitrogen Terhadap Pertumbuhan dan Produksi Jagung Lokal Kuning. Jurnal Sainsmat, 9(2): 144-158. ISSN: 2579-5686.

McWilliam, D.A., D.R. Berglund and G.J. Endres. 1999. Corn Growth and Management Quick Guide. North Dakota State University. North Dakota, USA.

Min, M. and W.S. Lee. 2005. Determination of significant wavelengths and prediction of nitrogen content for citrus. Transactions of the ASAE, 48(2): 455–461.

Purwanto, S. 2008. Perkembangan Produksi dan Kebijakan dalam Peningkatan Produksi Jagung. Direktorat Budi Daya Serealia. Direktorat Jenderal Tanaman Pangan. Bogor, Indonesia.

Stone, M.L., J.B. Solie, W.R. Raun, R.W. Whitney, S.L. Taylor and J.D. Ringer. 1996. Using of spectral radiance for correcting inseason fertilizer nitrogen deficiencies in winter wheat. Trans. ASAE, 39: 1623-1631.

Sugiyono. 2012. Metode Penelitian Kuantitatif Kualitatif dan R&D. Alfabeta, Bandung.

Thomas, J.R. and H.W. Gausman. 1977. Reflektansi daun vs. daun konsentrasi klorofil dan karotenoid untuk delapan tanaman. Agro. J., 69: 799–802.

Vigneau, N., M. Ecarnot, G. Rabatel and P. Roumet. 2011. Potential of field hyperspectral imaging as a nondestructive method to assess leaf nitrogen content in wheat. Field Crops Research, 122(1): 25–31.

Widowati, L.R., D. Nursyamsi, S. Rochayati dan M. Sarwani. 2011. Nitrogen Management on Agricultural Land in Indonesia. Proc. of Int. Seminar on Increased Agricultural Nitrogen Circulation in Asia: Technological Challenge to Mitigate Agricultural N Emissions. Taipei, Taiwan, Sep. 27‐28, 2011.

Xie, C., C. Yang, A. Hummel, G.A. Johnson and F.T. Izuno. 2018. Spectral reflectance response to nitrogen fertilization in field grown corn. Int. J. Agric. & Biol. Eng., 11(4): 118-126.

Yoder, B.J. and C.R.E. Pettigrew. 1995. Memprediksi nitrogen dan kandungan dan konsentrasi klorofil dari spektrum reflektansi (400–2,500nm) pada sisik daun dan kanopi. Penginderaan Jauh Mengepung, 53: 199–211.

Yu, K.Q., Y.R. Zhao, X.L. Li, Y.N. Shao, F. Liu and Y. He. 2014. Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant. Plos One, 9(12): 1-19.

Zhao, B., A. Duan, S.T. Ata-Ul-Karim, Z. Liu, Z. Chen, Z. Gong, J. Zhang, J. Xiao, Z. Liu and A. Qin. 2018. Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur. J. Agron., 93: 113–125.

Zhao, D., K.R. Reddy, V.G. Kakani, J.J. Read and G.A. Carter. 2003. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 257: 205–217.

Published
2022-06-15
How to Cite
ArdiansyahM., NugrohoB., & Al-FajarA. (2022). Spectral Response of Maize Canopy to Several Fertilization Treatments: Respon Spektral Tajuk Jagung pada beberapa Perlakuan Pemupukan. Jurnal Ilmu Tanah Dan Lingkungan, 24(1), 25-31. https://doi.org/10.29244/jitl.24.1.25-31