Genetic diversity of horseshoe crabs (Carcinoscorpius rotundicauda and Tachypleus gigas) in Demak, Madura and Balikpapan waters based on Random Amplified Polymorphic DNA marker

  • NAILA KHURIL AINI Institut Pertanian Bogor
  • Ali MASHAR Institut Pertanian Bogor
  • HAWIS H. MADDUPPA Institut Pertanian Bogor
  • YUSLI WARDIATNO Institut Pertanian Bogor
Keywords: Adaptation capability; heterozygosity; Limulidae;Xiphosura

Abstract

Horseshoe crab is an exotic and protected marine organism in Indonesia and is considered as the living fossil animal in the world. IUCN conservation status of Carcinoscorpius rotundicauda and Tachypleus gigas is still Data Deficient, and in Indonesia research on genetic population is lacking, if any. This study aims to reveal genetic diversity of C. rotundicauda and T. gigas populations in northern Java (Demak and Madura) and Balikpapan waters. This research was conducted by using molecular analysis with genetic markers Random Amplified Polymorphic DNA (RAPD). The primers used in this study were OPB 06, OPG 10, and OPX 03. The results showed that the highest polymorphism of C. rotundicauda was found in Demak (74.6667%) and heterozygosity was 0.2669. Furthermore, T. gigas had the highest polymorphism in Madura (74.3590%) and heterozygosity was 0.25551. Based on pairwise comparison tests, populations of C. rotundicauda and T. gigas in Demak, Madura, and Balikpapan were significantly different (p<0.05). The difference is believed due to the limitation movement of horseshoe crabs from and into the three locations, as well as the presence of natural geographic barrier. Thus,it can be concluded that horseshoe crabs in northern Java and Balikpapan waters has different genetic diversity. Genetically, horseshoe crab in northern Java or Balikpapan had relatively moderate diversity and low adaptation capability.

Downloads

Download data is not yet available.

References

Chauhan T, Rajiv K. 2010. Molecular markers and their applications in fisheries and aquaculture. Advances in Bioscience and Biotechnology. 1: 281-291.

Chen C-P, Yeh H-Y, Lin P-F. 2004. Conservation of horseshoe crabs in Kinmen, Taiwan: strategies and practices. Biodiversity and Conservation. 13: 1889–1904.

Chiu HMC, Morton B. 1999. The distribution of horseshoe crabs Tachypleus tridentatus and Carcinoscorpius rotundicauda in Hong Kong. Asian Marine Biology. 16:185-196.

Christianus A, Saad CR. 2007. Horseshoe crabs in Malaysia and the world. Fishery Mail. 16: 8-9.

Clark AG, Lanigan CMS. 1993. Prospects for estimating nucleotide divergence with RAPDs. Molecular and Biological Evolution. 10: 1096-1111.

Dillion N, Austin AD, Bartowsky E. 1996. Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect Molecular Biology. 5(1): 21-24.

Eldredge N, Stanley SM. 1984. Living Fossils. Berlin (BE): Springer.

Faturrohmah S, Marjuki B. 2017. Identifikasi dinamika spasial sumberdaya mangrove di wilayah pesisir Kabupaten Demak Jawa Tengah. Majalah Geografi Indonesia. 31(1): 56-64.

Febryano IG, Rusita. 2018. Persepsi wisatawan dalam pengembangan wisata pendidikan berbasis konservasi gajah Sumatera (Elephas maximus sumatranus). Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 8(1), 36-43. https://doi.org/10.29244/jpsl.8.3.376-382

Grogan WN. 2004. A mid-Atlantic study of the movement patterns and population distribution of the American horseshoe crab, L. Polyphemus. [master thesis]. Virginia (USA): Virginia Polytechnic Institute dan State University.

Ismail N, Taib M, Shamsuddin AA, Shazani S. 2011. Genetic variability of wild horseshoe crab, Tachypleus gigas (MÜller) in Tanjung Dawai, Kedah and Cherating, Pahang, Peninsular Malaysia. European Journal of Scientific Research. 60 (4): 592-601.

Ismane MA, Kusmana C, Gunawan A, Affandi R, Suwardi S. 2018. Keberlanjutan pengelolaan kawasan konservasi penyu di pantai Pangumbahan, Sukabumi, Jawa Barat. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 8(1), 36-43. https://doi.org/10.29244/jpsl.8.1.36-43

Iyengar A, Piyapattanakorn S, Stone DM, Heipel DA, Howell BR, Baynes SM, Maclean N. 2000. Identification of microsatellite repeats in turbot (Scophthalmus maximus) and dover sole (Solea solea) using RAPDbased technique: characterization of microsatellite markers in dover sole. Marine Biotechnology. 2: 49-56.

King TL, Eackles MS, Spidle AP, Brockmann HJ. 2005. Regional differentiation and sex-biased dispersal among populations of the horseshoe crab Limulus polyphemus. Transactions of the American Fisheries Society. 134: 441-465.

Kreamer G, Michels S. 2009. History of horseshoe crab harvest on Delaware Bay. Di dalam: Biology and conservation of horseshoe crabs. Tanacredi JT, Botton ML, Smith DR, editor. New York (NY): Springer. hlm 299–313.

Laurie K, Chen CP, Cheung SG, Do V, Hsieh H, John A., Mohamad F, Seino S, Nishida S, Shin P, Yang M. Tachypleus tridentatus (errata version published in 2019). The IUCN Red List of Threatened Species 2019 [Internet]. 2019 [cited 2020 Jan 18]. Available from: https://www.iucnredlist.org/species/21309/149768986.

Leary RF, Allendrof FW, Knudsen KL. 1985. Development instability and high meristic counts in interspecific hybrid of salmonid fishes. Evolution. 39: 318-326.

Mashar A, Butet NA, Juliandi B, Qonita Y, AA Hakim, Wardiatno Y. 2017. Biodiversity and distribution of horseshoe crabs in northern coast of Java and southern coast of Madura. IOP Conference Series: Earth and Environmental Science. 54: 012076.

Meilana L, Wardiatno Y, Butet NA, Krisanti M. 2016. Karakter morfologi dan identifikasi molekuler dengan marka gen CO1 pada mimi (Tachypleus gigas) di Perairan Utara Jawa. Ilmu dan Teknologi Kelautan Tropis. 8: 145-158.

Miller MP. 1997. Tools for population genetic analysis (TFPGA) 1.3: A windows program for the analysis of allozyme and molecular population genetic data. Software didistribusikan oleh penulis. Tersedia di: http://www.marksgeneticsoftware.net/.

Moore S, Perrin S. 2007. Seasonal Movement and Resource-Use Patterns of Resident Horseshoe Crab (Limulus polyphemus) Populations in a Maine, USA Estuary. Estuaries and Coasts. 30 (6): 1016–1026.

Muhsoni FF, Syarief M, Effendi M. 2011. Inventarisasi data potensi sumberdaya wilayah pesisir Kabupaten Sumenep. Jurnal Kelautan. 4(1): 96 - 201.

Nebauer SG, del Castillo-Agudo L, Segura J. 2000. An assesment of genetic relationships within the genus Digitalis based on PCR-generated RAPD markers. Theoretical and Applied Genetics. 100:1209-1216.

Noor P, Helminuddin. 2009. Valuasi ekonomi pemanfaatan hutan mangrove di kelurahan Teritip kota Balikpapan. Jurnal Kehutanan Tropika Humida. 2 (1): 69-80.

Penner GA, Bush A, Wise R, Kim W, Domier L, Kasha K, Laroche A, Scoles G, Molnar SJ, fedak G. 1993. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Applications. 2(4): 341–345. doi:10.1101/gr.2.4.341.

Pierce JC, Tan G, Gaffney PM. 2000. Delaware bay and Chesapeake bay populations of the horseshoe crab Limulus polyphemus are genetically distinct. Estuaries. 23: 690-698.

Quicke DLJ, Belshaw R, Lopez-Vaamonde C. 1999. Preservation of hymenopteran specimens for subsequent molecular and morphological study. Zoologica Scripta. 28(1-2): 261-267.

Rubiyanto E. 2012. Studi Populasi Mimi (Xiphosura) di Perairan Kuala Tungkal, Kabupaten Tanjung Jabung Barat, Jambi [tesis]. Depok (ID): Universitas Indonesia.

Saunders NC, Kessler LG, Avise JC. 1986. Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus. Genetics. 112(3): 613-627.Schaller YS, Chabot CC, Watson III WH. 2010. Seasonal movements of American horseshoe crabs L. polyphemus in the Great Bay Estuary, New Hampshire USA. Current Zoology. 56(5): 587-598.

Schaller YS, Chabot CC, Watson III WH. 2010. Seasonal movements of American horseshoe crabs L. polyphemus in the Great Bay Estuary, New Hampshire USA. Current Zoology. 56(5): 587-598.

Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG. 1994. Evaluating approaches to the conservation of rare and endangered plants. Ecology. 75: 584–606

Sekiguchi K, Yamamichi Y, Costlow JD. 1982. Horseshoe crab development studies I. Normal embryonic development of Limulus polyphemus compared with Tachypleus tridentatus. Di dalam: Boneventura J, Bonaventura C, Tesh S, editor. Physiology and Biology of Horseshoe Crabs: Studies on Normal and Environmentally Stressed Animals. New York (NY): Alan R. Liss, Inc. hlm 53-73.

Sekiguchi K. 1988. Biology of Horseshoe Crabs. Tokyo (JPN): Science House.

Selander RK, Yang SY, Lewontin RC, Johnson WE. 1970. Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic "relic". Evolution. 24: 402-414.

Shanks AL. 2009. Pelagic larval duration and dispersal distance revisited. Biological Bulletin. 16: 373-385.

Shuster CN Jr. 1982. A pictorial review of the natural history and ecology of the horseshoe crab, Limulus polyphemus, with reference to other limulidae. pp. 1–52. In: Physiology and Biology of Horseshoe Crabs: Studies on Normal and Environmentally Stressed Animals. (Bonaventura JC. Bonaventura, dan S. Tesh, Eds. New York (NY): Alan R Liss, Inc.

Slamat. 2009. Keanekaragaman genetik ikan betok (Anabas testudineus Bloch) pada ekosistem perairan rawa di Provinsi Kalimantan Selatan [master tesis]. Bogor (ID): Institut Pertanian Bogor.

Smith DR, Beekey MA, Brockmann HJ, King TL, Millard MJ, Zaldívar-Rae JA. 2016. Limulus polyphemus. The IUCN Red List of Threatened Species 2016. e.T11987A80159830. Available online at: http://www. iucnredlist.org/details/11987/0.

Smith JP. 2005. Random amplified polymorphic DNA (RAPD). Stock Identification Methods. 5(18): 371-388.

Soewardi K. 2007. Pengelolaan Keragaman Genetik Sumberdaya Perikanan dan Kelautan. Bogor (ID): Institut Pertanian Bogor.

Swan BL. 2005. Migrations of adult horseshoe crabs, Limulus polyphemus, in the Middle Atlantic Bight: a 17-year tagging study. Estuaries. 29(1): 28-40.

Tave D. 1993. Genetic for fish hatchery managers. Netherland (EU): Kluwer Academic Publishers.

Walls EA, Berkson J, Smith SA. 2002. The horseshoe crab, Limulus polyphemus: 200 million years of existence, 100 years of study. Reviews in Fisheries Science. 10(1): 39-73.

Weeden NF, Timmerman GM, Hemmat M, Kneen BE, Lodhi M.A. 1992. Inheritance and reliability of RAPD markers. In: Applications of RAPD Technology to Plant Breeding. Joint Plant Breeding Symposia Series, November 1, 1992, Minneapolis, MN. Crop Science Society of America, Madison, WI.

Williams JG, Kubelik AR, Lival KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18: 6531-5.

World Conservation Monitoring Centre. 1996b. Tachypleus Tridentatus, The IUCN Red List of Threatened Species [Internet]: [diunduh 28 Maret 2020] e. T21309A9267047. Tersedia pada: https://doi.org/10.2305/IUCN.UK.1996.RLTS.T21309A9267047.en

World Conservation Monitoring Centre. 1996a. Tachypleus gigas. The IUCN Red List of Threatened Species [Internet]. [diunduh 18 Januari 2020]. Tersedia pada: https://www.iucnredlist.org/species/21308/ 9266907.

Yang MC, Chen CA, Hsieh HL, Chen CP. 2007. Population Subdivision of the tri-spine horseshoe crab, Tachypleus tridentatus in Taiwan Strait. Zoological Science. 24: 219-224.Yang MC, Chen CA, Hsieh HL, Chen CP. 2007. Population Subdivision of the tri-spine horseshoe crab, Tachypleus tridentatus in Taiwan Strait. Zoological Science. 24: 219-224.

Published
2020-03-31
How to Cite
AINI, N. K., MASHAR, A., MADDUPPA, H. H. and WARDIATNO, Y. (2020) “Genetic diversity of horseshoe crabs (Carcinoscorpius rotundicauda and Tachypleus gigas) in Demak, Madura and Balikpapan waters based on Random Amplified Polymorphic DNA marker”, Journal of Natural Resources and Environmental Management, 10(1), pp. 124-137. doi: 10.29244/jpsl.10.1.124-137.