Kinerja Pembangkit Biolistrik Salt Bridge Mirrobial Fuel Cell Variasi Rasio Karagenan-Karboksimetil Selulosa The Performance of Salt Bridge Microbial Fuel Cell Bioelectric Generator in Variated Carrageenan-Carboxylmethyl Cellulose Ratio
Abstract
The microbial fuel cell (MFC) system is a renewable technology that converts organic matter into energy in the form of electricity. The purpose of this study was to determine the highest electrical yield from fish ‘pindang’ liquid waste through salt bridge MFC technology and determine the optimal ratio of carrageenan: carboxylmethyl cellulose in salt bridges to generate electrical energy in the MFC system. The carrageenan-carboxylmethyl cellulose salt bridges were prepared by treating the different carrageenan-carboxylmethyl cellulose compositions of 1: 1, 0.6:1, and 0.5: 1 (w/w). The highest electric voltage was produced from the carrageenan-carboxylmethyl cellulose salt bridge treatment with a ratio of 1:1 with a value of 0.88 V. The carrageenan-carboxylmethyl cellulose salt bridge with a ratio of 0.5:1 was produced the highest current strength of 1.22 mA and the highest electrical power of 0.85 mW. In addition, the reduction efficiency values of BOD and TAN on fishery waste with the treatment of C:CMC ratio of 1:1 were 90.36%, and 60.45%. System salt bridge MFC showed excellent performance and has the potential to be developed in the future.
References
Akaluka, C. K., Orji, J. C, Braide, W., Egbadon, E. O., & Adeleye, S. A. (2016). Abattoir wastewater treatment and energy recovery using a ferricyanide-catholyte microbial fuel cell. International Letters of Natural Sciences. 55, 68—76.
Barbosa, J. A., Abdelsadig, M.S., Conway, B.R., & Merchant, H.A. (2019). Using zeta potential to study the ionisation behaviour of polymers employed in modified-release dosage forms and estimating their pKa. International Journal of Pharmaceutics X. 24(1), 1—11.
Badan Pusat Statistik. (2020). Statistik Lingkungan Hidup Indonesia: Air dan Lingkungan.
Cai, T., Yang, Z., Li, H., Yang, H., Li, A., & Cheng, R. (2013). Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose. 20(5), 2605—2614.
Chowdhury, P., Viraraghavan, T., & Srinivasan, A. 2010, Biological treatment processes for fish processing wastewater. Bioresource Technology. 101:439—449.
Christwardana, M., Handayani, A. S., & Yudianti, R. (2020). Cellulose–carrageenan coated carbon felt as potential anode structure for yeast microbial fuel cell. International Journal of Hydrogen Energy. 1(1), 1—11.
Das D. (2018). Microbial Fuel Cell: A Bioelectrochemical System that Converts Waste to Watts. Springer.
Dewan Energi Nasional. (2019). Outlook Energi Indonesia (OEI) 2019. https://www.esdm.go.id.
Di Palma, L., Bavasso, I., Sarasini, F., Tirillò, J., Puglia, D., Dominici, F., Torre, L.. (2018). Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. European Polymer Journal. 99, 222—229.
Drisya, C. M., & Manjunath, N. T. (2017). Impact of nanoparticl e incorporated salt bridge on bioelectricity production and treatment efficiency of microbial fuel cell. International Journal for Scientific Research and Development. 5(6), 2104—2107.
Fan, L., Shi, J., & Xi, Y. (2020). PVDF-modified Nafion membrane for improved performance of MFC. Membranes. 10(8), 1—14.
Hassan, H., Jin, B., Dai, S., Ma, T., & Saint, C. (2016). Chemical impact of catholytes on Bacillus subtilis-catalysed microbial fuel cell performance for degrading 2, 4-dichlorophenol. Chemical Engineering Journal. 301, 103—114.
He, Z., Huang, Y., Manohar, A. K., & Mansfeld, F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry. 74, 78—82.
Hermayanti, A., & Nugraha, I. (2014). Potensi perolehan energi listrik dari limbah cair industri tahu dengan metode salt bridge microbial fuel cell. Sains Dasar. 3(2), 162—168.
Huang, S., Zhu, G., & Gu, X. (2020). The relationship between energy production and simultaneous nitrification and denitrification via bioelectric derivation of microbial fuel cells at different anode numbers. Environmental Research. 184:1—7.
Ibrahim, B., Salamah, E., & Alwinsyah, R. (2014). Pembangkit biolistrik dari limbah cair industri perikanan menggunakan microbial fuel cell dengan jumlah elektroda yang berbeda. Jurnal Dinamika Maritim. 4(1), 1—9.
Ibrahim, B., Suptijah, P., & Adzani, Z. N. (2017). Kinerja microbial fuel cell penghasil biolistrik dengan perbedaan jenis elektroda pada limbah cair industri perikanan. Jurnal Pengolahan Hasil Perikanan Indonesia. 20(2), 296—304.
Ibrahim, B., Uju, & Soleh, A. M. (2020). Kinerja membran komposit kitosan-karagenan pada sistem microbial fuel cell dalam menghasilkan biolistrik dari limbah pemindangan ikan. Jurnal Pengolahan Hasil Perikanan Indonesia. 23(1), 137—146.
Jatoi, A. S., Baloch, A. G., Jadhav, A., Nizamuddin, S., Aziz, S., Soomro, S. A., Nazir, I., Abro, M., Baloch, H. A., Ahmed, J., & Mubarak, N. M. (2020). Improving fermentation industry sludge treatment as well as energy production with constructed dual chamber microbial fuel cell. Springer Nature Applied Sciences. 2(1), 2—9.
Jatoi, A. S., Mahar, H., Aziz, S., Siddique, M., Memon, F., Malik, A. A., Hussain, S., & Kakar, E. (2016). To investigate the optimized conditions of salt bridge for bio-electricity generation from distillery waste water using microbial fuel cell. NUST Journal of Engineering Sciences. 9(2), 29—34.
Kaushik, A., & Chetal, A. (2013). Power generation in microbial fuel cell fed with post methanation distillery effluent as a function of pH microenvironment. Bioresource Technology. 147, 77—83.
Kementerian Lingkungan Hidup. (2014). Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 Tentang Baku Mutu Air Limbah.
Kim, T., An, J., Lee, H., Jang, J. K., & Chang, I. S. (2016). pH-dependent ammonia removal pathways in microbial fuel cell system. Bioresource Technology. 215, 290—295.
Kreiter, J., & Pohl, E. E. (2019). A micro-agar salt bridge electrode for analyzing the proton turnover rate of recombinant membrane proteins. Journal of Visualized Experiments. 143, 1—6.
Li, N., Gao, B., Yang, R., & Yang, H. (2022). Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance in removal of fluoroquinolone antibiotics from water. Front. Environ. Sci. Eng. 16, 133 (2022). https://doi.org/10.1007/s11783-022-1568-x.
Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research. 39(5), 942—952.
Mbarek, M. B., Saidi, K., & Rahman, M. M. (2018). Renewable and non-renewable energy consumption, environmental degradation and economic growth in Tunisia. Quality & Quantity. 52(3), 1105—1119.
Mook, W. T., Chakrabarti, M. H., Aroua, M. K., Khan, G. M. A., Ali, B. S., Islam, M. S., & Hassan, M. A. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination. 285, 1—13.
Naik, S., & Jujjavarappu, E. S. (2018). Simultaneous bioelectricity generation from cost-effective MFC and water treatment using various wastewater samples. Environmental Science and Pollution Research. 27(22), 27383—27393.
Parkash, A., Aziz, S., & Soomro, S. A. (2015). Impact of salt concentrations on electricity generation using hostel sludge based duel chambered microbial fuel cell. Journal Bioprocess Biotech. 5(8), 1—6.
Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy. 35, 9349—9384.
Purwono, Hermawan, & Hadiyanto. (2015). Penggunaan teknologi reaktor microbial fuel cell dalam pengolahan limbah cair industri tahu untuk menghasilkan energi listrik. Jurnal Presipitasi. 12(2), 57—65.
Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., Chae, K. J., Wilberforce, T., & Olabi, A. G. (2021). Environmental impacts of solar energy systems: A review. Science of the Total Environment. 754:1—19.
Retnosari, A. A., & Shovitri, M. (2013). Kemampuan isolat Bacillus sp. dalam mendegradasi limbah tangki septik. Jurnal Sains dan Seni ITS. 2(1), 7-11.
Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R., & Medintz, I. L. (2011). Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Analytical Chemistry. 83(12), 4453—4488.
Sivakumar, D. (2021). Wastewater treatment and bioelectricity production in microbial fuel cell: salt bridge configurations. International Journal of Environmental Science and Technology. 18(6), 1379-1394.
Türker, O. C., & Yakar, A. (2017). A hybrid constructed wetland combined with microbial fuel cell for boron (B) removal and bioelectric production. Ecological Engineering. 102, 411—421.
Uddin, S. S., Roni, K. S., & Shatil, A. H. M. (2016). Double compartment microbial fuel cell design using salt bridge as a membrane with sucrose and starch as a substrate. International Conference on Electrical, Computer & Telecommunication Engineering. 1(1), 1—4.
Wang, J., Song, X., Wang, Y., Abayneh, B., Li, Y., Yan, D., & Bai, J. (2016). Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: Establishment of electrochemically active bacteria community on anode. Bioresource Technology. 221, 358—365.
Zainuddin, N.K., Saadiah, M. A., Abdul Majeed, A. P. P., & Samsudin, A. S. (2018). Characterization on conduction properties of carboxymethyl cellulose/kappa carrageenan blend-based polymer electrolyte system. International Journal of Polymer Analysis and Characterization. 23(4), 321—330.
Zhang, Y., Xu, Q., Huang, G., Zhang, L., & Liu, Y. (2020). Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell. International Journal of Hydrogen Energy. 45(58), 34099—34109.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.