Peningkatan stabilitas oksidatif minyak mata tuna dengan metode purifikasi dan penambahan natural astaxanthin (NAst) Improvement of oxidative stability of tuna eyes oil by purification methods and natural astaxanthin (NAst) addition

Nurmaida Nurmaida, Bustami Ibrahim, Wini Trilaksani

Abstract

Fish oil is a rich source of long-chain polyunsaturated fatty acids (LCPUFA) that are essential for human health. These fatty acids, specifically eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3), have been shown to provide numerous health benefits.Tuna eye stands out for its exceptional DHA content, which allows it to be refined into tuna eyes oil. The disadvantage of tuna eye oil is its susceptibility to oxidative damage.Astaxanthin, a carotenoid pigment, exhibits robust antioxidant properties and suppresses lipid peroxidation, thereby preventing oxidative damage. The objective of this research is to identify the optimal concentration of astaxanthin and the most suitable refined tuna eye oil based on quality parameters and oxidative stability.The purification of tuna oil was accomplished through a process that involved neutralization with 16oBe NaOH, followed by bleaching with 5% magnesol.The subsequent combination of refined tuna eye oil with shrimp shells was carried out at concentrations of 0%, 0.2%, 0.4%, and 0.6% astaxanthin.The parameters that were examined included free fatty acids, peroxide value, p-anisidine, and total oxidation.The outcomes of the study indicated that the refining process of tuna oil through neutralization and bleaching resulted in a free fatty acid content of 0.33±0.08%, a peroxide value of 4.12±0.82 meq/kg, a p-Anisidine value of 2.83±0.22 meq/kg, and a total oxidation of 11.08±1.62 meq/kg. The IC50 value of astaxanthin was found to be 14.14 ppm. The optimal concentration of astaxanthin for addition was determined to be 0.6%, resulting in a free fatty acid content of 1.03±0.05%, a peroxide value of 8.08±0.14 meq/kg, an anisidine value of 9.12±0.02 meq/kg, and a total oxidation value of 25.29±0.31 meq/kg. Among these values, the total oxidation value showed the smallest change after 60 days of storage, and the utilization of purification techniques and incorporation of astaxanthin may enhance the oxidative stability of tuna oil during storage.

References

Abd El-Ghany, M. N., Hamdi, S. A., Elbaz, R. M., Aloufi, A. S., El Sayed, R. R., Ghonaim, G. M., & Farahat, M. G. (2023). Development of a microbial-assisted process for enhanced astaxanthin recovery from crab exoskeleton waste. Fermentation, 9(6), 505. https://doi.org/10.3390/fermentation9060505
American Oil Chemists Society. (1997). Official Methods and Recommended Practices of AOCS International.
Association of Official Analytical Chemist. (2005). Official Methods of Analysis of the Association of Official Analytical of Chemist.
American Oil Chemists Society. (2011). p-Anisidine Value. In AOCS Official Method Cd 18-90 (Ed.). Official Methods and Recommended Practices of the American Oil Chemists' Society (6th ed., pp. 2011a).
American Oil Chemists Society. (2011). Peroxide Value Using Chloroform. In AOCS Official Method Cd 8-53 (Ed). Official Methods and Recommended Practices of the American Oil Chemists' Society (6th ed., pp. 2011h).
Badan Standardisasi Nasional. (2018). Minyak Ikan Murni (Refined Fish Oil)-Syarat Mutu dan Pengolahan. SNI 8467-2018.
Badan Standardisasi Nasional. (2021). Cara uji kimia- Bagian 23: Penentuan logam berat merkuri (Hg), timbal (Pb), cadmium (Cd), arsen (As) dan timah putih (Sn) pada hasil perikanan dengan Inductively Couple Plasma Mass Spectrometer (ICP-MS) secara simultan. SNI 2354-23:2021.
Badan Pengawas Obat dan Makanan. (2022). Peraturan BPOM No. 9 tahun 2022 tentang persyaratan cemaran logam berat dalam pangan olahan.
Britton G. (1995). Structure and properties of carotenoids in relation to function. Faderation of American Societies for Experimental Biology Journal, 9(15), 1551-8. https://doi.org/10.1096/fasebj.9.15.8529834
Chakrabarti, R. (2002). Carotenoprotein from tropical brown shrimp shell waste by enzymatic process. Food biotechnology, 16(1), 81-90. https://doi.org/10.1081/FBT-120004202
Chintong, S., Phatvej, W., Rerk-am, U., & Waiprib, Y. (2019). In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants, 8(5), 128. https://doi.org/10.3390/antiox8050128
Codex Alimentarius Commission. (2017). Standard for fish oils CODEX STAN 329- 2017.
Félix-Soriano, E., Martínez-Gayo, A., Cobo, M. J., Pérez-Chávez, A., Ibáñez-Santos, J., Palacios Samper, N., Galarza, I. G., Cuervo, M., García-Unciti, Gonzáles-Muniesa, P., M., Lorente-Cebrían, S., & Moreno-Aliaga, M. J. (2021). Effects of DHA-Rich n-3 fatty acid supplementation and/or resistance training on body composition and cardiometabolic biomarkers in overweight and obese post-menopausal women. Nutrients, 13(7), 2465-2486. https://doi.org/10.3390/nu13072465
Gao, Z., Ji, Z., Wang, L., Deng, Q., Quek, S. Y., Liu, L., & Dong, X. (2023). Improvement of oxidative stability of fish oil-in-water emulsions through partitioning of sesamol at the interface. Foods, 12(6), 1287-1303. https://doi.org/10.3390/foods12061287
Göransson, M., Nilsson, F., & Jevinger, Å. (2018). Temperature performance and food shelf-life accuracy in cold food supply chains–Insights from multiple field studies. Food Control, 86(2018), 332-341. https://doi.org/10.1016/j.foodcont.2017.10.029
Hubinont, C., & Savoye, T. (2017). Maternal and fetal benefits of DHA supplementation during pregnancy. Journal of Pregnancy and Reproduction, 1(1), 1–7. https://doi.org/10.15761/JPR.1000103
Jun, M., Fu, H. Y., Hong, J., Wan, X., Yang, C. S., & Ho, C. T. (2003). Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria lobata Ohwi). Journal of food science, 68(6), 2117-2122. https://doi.org/10.1111/j.1365-2621.2003.tb07029.x
La Dia, W. O. N. A, Trilaksani, W., & Ramadhan, W. (2022). Purifikasi minyak mata tuna (Thunnus sp.) kaya DHA dengan variasi adsorben. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(3), 428-440. http://dx.doi.org/10.17844/jphpi.v25i3.42794
Liang, J., Tian, Y., Yang, F., Zhang, J., & Skibsted, L. H. (2009). Antioxidant synergism between carotenoids in membranes. Astaxanthin as a radical transfer bridge. Food Chemistry, 115(4), 1437–1442. https://doi.org/10.1016/j.foodchem.2009.01.074
Mcnulty, H., Jacob, R. F., & Mason, R. P. (2008). Biologic activity of carotenoids related to distinct membrane physicochemical interactions. The American journal of cardiology, 101(10A), 20-29. https://doi.org/10.1016/j.amjcard.2008.02.004
Meng, F., Qiu, J., Chen, H., Shi, X., Yin, M., Zhu, M., & Yang, G. (2021). Dietary supplementation with N‐3 polyunsaturated fatty acid‐enriched fish oil promotes wound healing after ultraviolet B‐induced sunburn in mice. Food Science & Nutrition, 9(7), 3693-3700. https://doi.org/10.1002/fsn3.2330
Nantitanon, W., Chowwanapoonpohn, S., & Okonogi, S. (2007). Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Scientia Pharmaceutica, 75(1), 35-54. https://doi.org/10.3797/scipharm.2007.75.35
Nazir, N., Diana, A., & Sayuti, K. (2017). Physicochemical and Fatty acid profile of fish oil from head of tuna (Thunnus albacares) extracted from various extraction method. International Journal on Advanced Science, Engineering and Information Technology, 7(2), 709-715. https://doi.org/74384484/1063
Niamnuy, C., Devahastin, S., Soponronnarit, S., & Raghavan, G. V. (2008). Kinetics of astaxanthin degradation and color changes of dried shrimp during storage. Journal of Food Engineering, 87(4), 591-600. https://doi.org/10.1016/j.jfoodeng.2008.01.013
Ogrodowska, D., Laaksonen, O., & Konopka, I. (2020). Pumpkin oil addition and encapsulation process as methods to improve oxidative stability of fish oil. LWT - Food Science and Technology, 124(2020), 1-9. https://doi.org/10.1016/j.lwt.2020.109142
Okada, S., Nur-E-Borhan, S. A., & Yamaguchi, K. (1994). Carotenoid composition in the exoskeleton of commercial black tiger prawns. Fisheries science, 60(2), 213-215. https://doi.org/10.2331/fishsci.60.213
Oslan, S. N. H., Tan, J. S., Oslan, S. N., Matanjun, P., Mokhtar, R. A. M., Shapawi, R., & Huda, N. (2021). Haematococcus pluvialis as a potential source of astaxanthin with diverse applications in industrial sectors: current research and future directions. Molecules, 26(21), 6470-6481. https://doi.org/10.3390/molecules26216470
Phung, A. S., Bannenberg, G., Vigor, C., Reversat, G., Oger, C., Roumain, M., ... & Wang, S. C. (2020). Chemical compositional changes in over-oxidized fish oils. Foods, 9(10), 1501-1532. https://doi.org/10.3390/foods9101501
Qiu, C., Zhao, M., Andrew, E., & Julian, D. (2015). Influence of anionic dietary fibers (xanthan gum and pectin ) on oxidative stability and lipid digestibility of wheat protein-stabilized fish oil-in-water emulsion. Food Research International, 74(2015), 131-139. https://doi.org/10.1016/j.foodres.2015.04.022
Rizzardi, N., Pezzolesi, L., Samor, C., Senese, F., Zalambani, C., Pitacco, W., Calonghi, N., Bergamini, C., Prata, C., & Fato, R. (2022). Natural astaxanthin is a green antioxidant able to counteract lipid peroxidation and ferroptotic cell death. International Journal of Molecular Sciences, 23(23), 15137-15153. https://doi.org/10.3390/ijms232315137
Sachindra, N. M., Bhaskar, N., & Mahendrakar, N. S. (2005). Carotenoids in different body components of Indian shrimps. Journal of the Science of Food and Agriculture, 85(1), 167-172. https://doi.org/10.1002/jsfa.1977
Šimat, V., Vlahovic, J., Soldo, B., Skroza, D., Ljubenkov, I., & Mekinic, I. G. (2019). Production and refinement of omega-3 rich oils from processing by-products of farmed fish species. Foods, 8(4), 125-139. https://doi.org/10.3390/foods8040125
Stoknes, I. S., Økland, H. M., Falch, E., & Synnes, M. (2004). Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 138(2), 183-191. https://doi.org/10.1016/j.cbpc.2004.03.009
Suseno, S. H., Hulu, D. P., Bija, S., & Fitriana, N. (2018). Stability of sardine (sardinella sp.) oil soft gel through salt solution and citric acid degumming method. Pakistan Journal of Biotechnology, 15(1), 11-14. https://pjbt.org/index.php/pjbt/article/download/99/94
Trilaksani, W., Riyanto, B., & Syifa, A. L. (2020). Extraction and microencapsulation of tuna virgin fish oil with mangrove fruit extract fortified into extrusion cereals [Conference session]. The International Symposium; Coastal ecosystem and biodiversity of Asia-Pacifik, Bogor, Indonesia. IOP Conference Series: Earth and Environmental Science. https://doi. org/10.1088/1755-1315/420/1/012032
Trilaksani, W., Riyanto, B., Nurhayati, T., Santoso, J., & Kurniawan, I. A. H. (2021). Integrasi sentrifugasi suhu rendah dengan optimasi ekstraksi enzimatis minyak mata tuna menggunakan response surface methodology. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 395-406. https://doi.org/10.17844/ jphpi.v24i3.36652
Zhang, T. T., Xu, J., Wang, Y. M., & Xue, C. H. (2019). Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Progress in Lipid Research, 75(08), 100997-101021. https://doi. org/10.1016/j.plipres.2019.100997

Authors

Nurmaida Nurmaida
nurmaidanurmaida@apps.ipb.ac.id (Primary Contact)
Bustami Ibrahim
Wini Trilaksani
NurmaidaN., IbrahimB., & TrilaksaniW. (2024). Peningkatan stabilitas oksidatif minyak mata tuna dengan metode purifikasi dan penambahan natural astaxanthin (NAst) : Improvement of oxidative stability of tuna eyes oil by purification methods and natural astaxanthin (NAst) addition. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(2), 89-103. https://doi.org/10.17844/jphpi.v27i2.48961

Article Details