Metaanalisis peranan teknologi proses pengolahan terhadap penurunan alergenisitas ikan Meta-analysis on the role of food processing technology for fish allergenicity reduction

Harumi Sujatmiko, Nurheni Sri Palupi, Nur Wulandari

Abstract

The Food and Agriculture Organization (FAO) categorizes fish into one of eight types of food ingredients that generally cause allergic reactions in sensitive individuals. The clinical presentations of fish allergies can range from mild to severe, and in some cases, may be life-threatening. Food processing technology has been proven to alter the allergenicity of fish with varying effectiveness. This study aimed to determine the most effective processing technology for reducing fish allergenicity through a meta-analysis. Based on the PRISMA diagram, twelve articles were selected. Data were analyzed using the standardized mean difference (SMD) effect size with 95% confidence interval (95% CI). Non-thermal processing technologies, such as ultraviolet radiation, high hydrostatic pressure, and the Maillard reaction, have been shown to significantly decrease the allergenicity of fish. Conventional thermal processing was found to have a limited effect on reducing fish allergenicity. SMD values showed that the application of nonthermal processing technology was the most effective in reducing fish allergenicity. At the cellular level, processing technology has been shown to significantly decrease the release of cytokines, such as IL-4 and IL-13, as well as inflammatory mediators, including histamine, tryptase, and β-hexosaminidase.

References

Ahmed, I., Ma, J., Li, Z., Lin, H., Xu, L., Sun, L., & Tian, S. (2019). Effect of tyrosinase and caffeic acid crosslinking of turbot parvalbumin on the digestibility, and release of mediators and cytokines from activated RBL-2H3 cells. Food Chemistry, 300, 1-9. https://doi.org/10.1016/j.foodchem.2019.125209
Arshad, U., Zenobi,M. G., Staples, C., R., & Santos, J. E. P. (2019). Meta-analysis of the effect of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. Journal of Dairy Science, 103(1), 282-300. https://doi.org/10.3168/jds.2019-16842.
Astuti, R. M., Palupi, N. S., Suharto, M. T., Kusumaningtyas, E., & Lioe, H. N. (2022). Effect of processing treatments on the allergenicity of nuts and legumes: a meta-analysis. Journal of Food Science, 88(1), 28-56. https://doi.org/10.1111/1750-3841.16381.
Cabanillas, B., & Novak, N. (2017). Effects of daily food processing on allergenicity. Critical Reviews in Food Science and Nutrition, 59, 31-42. https://doi.org/10.1080/10408398.2017.1356264.
Chatterjee, U., Mondal, G., Chakraborti, P., Patra, H. K., & Chatterjee, B. P. (2006). Changes in the allergenicity during different preparations of Pomfret, Hilsa, Bhetki and mackerel fish as illustrated by enzyme-linked immunosorbent assay and immunoblotting. International Archives of Allergy and Immunology, 141(1), 1-10. https://doi.org/10.1159/000094176.
Cochrane. (2016). Cochrane handbook for systematic review. WILEY Blackwell.
Food and Agriculture Organization. (2020). The state of world fisheries and aquaculture 2020.
Food and Drugs Administration. (2021). Food allergies: what you need to know.
Huang, H. W., Wang, C. Y., & Yang, B. B. (2014). Potential utility of high-pressure processing to address the risk of food allergen concern. Comprehensive Reviews in Food Science and Food Safety, 13, 78-90. https://doi.org/10.1111/1541-4337.12045.
Jin, Y., Deng, Y., Qian, B., Zhang, Y., Liu, Z., & Zhao, Y. (2015). Allergenic response to squid (Todarodes pacifus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure. Food and Chemical Toxicology, 76, 86-93. https://doi.org/10.1016/j.fct.2014.12.002.
Kubota, H., Kobayashi, A., Kobayashi, Y., Shiomi, K., & Hamada-Sato, N. (2016). Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment. Food Chemistry, 206, 78-84. https://doi.org/10.1016/j.foodchem.2016.03.043.
Kobayashi, Y., Kuriyama, T., Nakagawara, R., Aihara, M., & Sato, N. H. (2016). Allergy to fish collagen: thermostability of collagen and IgE reactivity of patients’ sera with of 11 species of bony and cartiginous fish. Allergology International, 65(4), 450-458. https://dx.doi.org/10.1016/j.alit.2016.04.012.
Lee, Y. H. (2018). An overview of meta-analysis for clinicians. The Korean Journal of Internal Medicine, 33(2), 277-283. https://doi.org/10.3904/kjim.2016.195.
Li, L. X., Hong, L., Xing, Z. L., Ishfaq, A., Pramod, S. N., Hang, L., Tao, L., Lan, T. S., & Wen, Y. Z. (2020). Influence of nonthermal extraction technique and allergenicity characteristics of tropomyosin from fish (Larimichthys crocea) in comparison with shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum). Food Chemistry, 309, 1-9. https://doi.org/1016/j.foodchem.2019.125575.
Liu, Y. Y., Chen, X. F., Hu, J. W., Chen, Z. W., Zhang, L. J., Cao, M. J., & Liu, G. M. (2014). Purification and characterization of protamine, the allergen from ilt of large yellow croaker (Pseudosciaena crocea) and its components. Journal of Agricultural and Food Chemistry, 64(9), 1999-2011. https://doi.org/10.1021/acs.jafc.5b05899.
Lv, L., Tian, S., Ahmed, I., Pavase, T. R., Lin, H., Xu, L., Li, Z., & Liu, F. (2019). Effect of laccase-catalyzed cross-linking on the structure and allergenicity of Paralichthys olivaceus parvalbumin mediated by propyl gallate. Food Chemistry, 297, 1-9. https://doi.org/10.1016/j.foodchem.2019.
Ma, X., Liang, R., Xing, Q., & Lozano-Ojalvo, D. (2020). Can food processing produce hypoallergenic egg?. Journal of Food Science, 85(9), 1-10. https://doi.org/10.1111/17503841.15360.
Mayorga, C., Palomares, F., Canas, J. A., Perez-Sanchez, N., Nunez, R., Torres, M. J., & Gomez, F. (2021). New insights in therapy for food allergy. Foods, 10, 1-23. https://doi.org/10.3390/foods10051037.
Messina, M. & Venter, C. (2020). Recent surveys on food allergy prevalence. Nutrition Today, 50(1), 22-30. https://doi.org/10.1097/NT.0000000000000389.
Mikolajewicz, N., & Komarova, S. V. (2019). Meta-analytic methodology for basic research: a practical guide. Frontiers in Physiology, 10, 1-20. https://doi.org/3389/fphys.2019.00203.
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1-9. https://doi.org/10.1186/2046-4053-4-1.
Mueller, M., D’Addario, M., Egger, M., Cevallos, M., Dekkers, O., Mugglin, C., & Scott, P. (2018). Methods to systematically review and meta-analyse observational studies: a systematic scoping review of recommendations. BMC Medical Research Methodology, 18(44), 1-18. https://doi.org/10.1186/s12874-018-0495-9.
Nugraha, R., Pamingkas, I. D., Pertiwi, R. M., & Nurhayati, T. (2020). Penurunan kandungan protein penyebab alergi pada proses pembuatan surimi ikan nila (Oreochromis noliticus). Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 558-565.
Nwaru, B. I., Hickstein, L., Panesar, S. S., Roberts, G., Muraro, A., & Sheikh, A. (2014). Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy, 69, 992-1007. https://doi.org/10.1111/all.12423.
Palupi, N. S., Indrastuti, N. A., & Wulandari, N. (2021). Indonesian traditional salted fish: the alteration its allergenicity during processing. Journal of Aquatic Food Product Technology, 30(3), 352-362. https://doi.org/10.1080/10498850.2021.1882632.
Sawilowsky, S. S. (2009). New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 8(2), 597-599. https://doi.org/10.22237/jmasm/1257035100.
Teodorowicz, M., Neerven, J., & Savelkoul, H. (2017). Food processing: the influence of the Maillard reaction on immunogenicity and allergenicity of food proteins. Nutrients, 9(835), 1-18. https://doi.org/10.3390/nu9080835.
Tsai, C. L., Perng, K., Hou, Y. C., Shen, C. J., Chen, I. J., & Chen, Y. T. (2023). Effect of spesies, muscle location, food processing and refrigerated storage on the fish allergens, tropomyosin and parvalbumin. Food Chemistry, 402, 1-9. https://doi.org/10.1016/j.foodchem.2022.134479
Ueno, R., Takaoka, Y., Shimojo, N., Ohno, F., Yamaguchi, T., Matsunaga, K., & Kameda, M. (2020). A case of pediatric anaphylaxis caused by gummy tablets containing fish collagen. Asia Pacific Allergy, 10(4), 1-5. https://doi.org/10.5415/apallergy.2020.10.e35.
Usui, M., Harada, A., Ishimaru, T., Sakumichi, E., Saratani, F., Sato-Minami, C., Azakami, H., Miyasaki, T., & Hanaoka, K. (2013). Contribution of structural reversibility to the heat stability of the tropomyosin shrimp allergen. Bioscience, Biotechnology, and Biochemistry, 77(5), 948-953. https://doi.org/10.1271/bbb.120887.
Vanga, S. K., Singh, A., & Raghavan, V. (2015). Review of conventional and novel food processing methods on food allergens. Critical Reviews in Food Science and Nutrition, 57(10), 2077-2093. https://doi.org/10.1080/10408398.2015.1045965.
Wu, Y., Lu, Y., Huang, Y., Lin, H., Chen, G., Chen, Y., & Li, Z. (2022). Glycosylation reduce the allergenicity of turbot (Scophthalmus maximus) parvalbumin by regulating digestibility, cellular mediators release and Th1/Th2 immunobalance. Food Chemistry, 382(15), 1-10. https://doi.org/10.1016/j.foodchem.2022.132574.
Xu, L., Sun, L., Lin, H., Ishfaq, A., & Li, Z. (2019). Allergenicity of tropomyosin of shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum) is higher than that of fish (Larimichthys crocea) via in vitro and in vivo assessment. European Food Research and Technology, 246, 103-112. https://doi.org/10.1007/s00217-019-03402-0.
Xu, L. L., Chen, J., Sun, L. R., Gao, X., Lin, H., Ahmed, I., Pramod, S. N., & Li, Z. X. (2020). Analysis of the allergenicity and B cell epitopes in tropomyosin of shrimp (Litopenaeus vannamei) and correlation to cross-reactivity based on epitopes with fish (Larimichthys crocea) and clam (Ruditapes philippinarum). Food Chemistry, 323, 1-10. https://doi.org/10.1016/j.foodchem.2020.126763.
Yang, S. Y., Kim, S. W., Kim, Y., Lee, S. H., Jeon, H., & Lee, K. W. (2015). Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysate using response surface methodology. Food Chemistry, 176, 420-425. https://doi.org/10.1016/j.foodchem.2014.12.090.
Zhang, Z., Yang, Y., Zhou, P., Zhang, X., & Wang, J. (2017). Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry, 217, 678 - 686. https://doi.org/10.1016/j.foodchem.2016.09.040.
Zhang, Y., Bi, Y., Wang, Q., Cheng, K. W., & Chen, F. (2019). Application of high pressure processing to improve digestibility, reduce allergenicity, and avoid protein oxidation in cod (Gadus morhua). Food Chemistry, 298, 1-7. https://doi.org/10.1016/j.foodchem.2019.125087.
Zhang, M., Tu, Z., Liu, J., Hu, Y., Wang, H., Mao, J., & Li, J. (2020). The IgE/IgG binding capacity and structural changes of Alaska pollock parvalbumin glycated with different reducing sugar. Journal of Food Biochemistry, 45(1), 1-10. https://doi.org/10.1111/jfbc.13539.
Zhao, Y. J., Cai, F. Q., Jin, T. C., Zhang, L. J., Fei, D. X., Liu, M. G., & Cao, M. J. (2017). Effect of Maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin. LWT-Food Science and Technology, 75, 25-33. https://doi.org/10.1016/j.lwt.2016.08.049.
Zhao, Y., Jiang, X., Tang, C., & Rao, Q. (2023). Composition, structural configuration, and antigenicity of Atlantic cod (Gadus morhua) tropomyosin. Food Chemistry, 399, 1-9. https://doi.org/10.1016/j.foodchem.2022.133966.

Authors

Harumi Sujatmiko
Nurheni Sri Palupi
hnpalupi@apps.ipb.ac.id (Primary Contact)
Nur Wulandari
SujatmikoH., PalupiN. S., & WulandariN. (2023). Metaanalisis peranan teknologi proses pengolahan terhadap penurunan alergenisitas ikan: Meta-analysis on the role of food processing technology for fish allergenicity reduction . Jurnal Pengolahan Hasil Perikanan Indonesia, 26(3), 350-360. https://doi.org/10.17844/jphpi.v26i3.47344

Article Details