Purifikasi fikosianin dari Spirulina platensis hasil intervensi kemangi (Ocimum basilicum) pada konsentrasi amonium sulfat berbeda Purification of phycocyanin from Spirulina platensis with basil (Ocimum basilicum) intervention on different ammonium sulphate concentration

Yuliani Yuliani, Tri Winarni Agustini, Eko Nurcahya Dewi, Diana Nur Afifah

Abstract

Spirulina platensis is a filamentous cyanobacterium that contains phycobiliprotein compounds. Phycocyanin is the most prevalent phycobiliprotein pigment-protein complex and possesses the greatest commercial value in the food, cosmetic, and pharmaceutical sectors.  The specific activity of phycocyanin can be enhanced through purification, which aims to increase its level of purity. Basil, scientifically known as Ocimum basilicum, is a plant that possesses azulene, a blue aromatic hydrocarbon. The purpose of this study was to investigate the impact of basil intervention and saturation level of ammonium sulfate deposition on the purity index, phycocyanin content, recovery, and total protein in the S. platensis phycocyanin purification process.  The purification method utilized for phycocyanin involves a multistep process, which includes the extraction of S. platensis without any intervention or basil intervention, followed by precipitation with ammonium sulfate at different saturation levels ranging from 0-20%, 20-50%, 50-70%, and 70-90%, and ultrafiltration using DF/UF.  The findings indicated that the optimal saturation level for samples without intervention at the purification stage involving ammonium sulfate precipitation was 50%, whereas for samples with intervention, the optimal level was 70%.  The findings revealed that the phycocyanin obtained through basil intervention exhibited superior purity and phycocyanin content compared to the samples that did not undergo intervention at every stage of purification.  The purity value at the final stage of purification was 2.54 AU for the samples that did not receive any intervention, and 2.57 AU for the basil intervention samples. Basil intervention treatment has been shown to significantly decreased the recovery value by 47.39% and the total phycocyanin protein by 12.5% in samples without intervention. Additionally, the intervention or non-intervention treatment of basil leaves on S. platensis reduced the recovery value and total protein content at each purification stage.

References

Abalde, J., Betancourt, L., Torres, E., Cid, A., & Barwell, C. (1998). Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Science, 136(1), 109–120. https://doi.org/10.1016/S0168-9452(98)00113-7
Agustini, T. W., Dewi, E. N., Amalia, U., & Kurniasih, R.A. (2019). Application of basil leaf extracts to decrease Spirulina platensis off-odour in increasing food consumption. International Food Research Journal, 26(6), 1789-1794.
Amarante, M. C. A., Braga, A. R. C., Sala, L., & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 1-7. https://doi.org/10.1016/j.foodres.2020.109602
Antecka, A., Klepacz-Smółka, A., Szeląg, R., Pietrzyk, D., & Ledakowicz, S. (2022). Comparison of three methods for thermostable C-phycocyanin separation and purification. Chemical Engineering and Processing-Process Intensification, 171, 1-8. https://doi.org/10.1016/j.cep.2021.108563
Anvar, A. A., & Nowruzi, B. (2021). Bioactive properties of Spirulina: A review. Microbial Bioactives, 4, 134-142. http://dx.doi.org/10.25163/microbbioacts.412117B0719110521
Arslan, R., & Aksay, S. (2021). Investigation of sensorial and physicochemical properties of yoghurt colored with phycocyanin of Spirulina platensis. Journal of Food Processing and Preservation, 46(6), 1-5. https://doi.org/10.1111/jfpp.15941
Balti, R., Zayoud, N., Hubert, F., Beaulieu, L., & Massé, A. (2021). Fractionation of Arthrospira platensis (Spirulina) water soluble proteins by membrane diafiltration. Separation and Purification Technology, 256, 1-10. https://doi.org/10.1016/j.seppur.2020.117756
Brião, V. B., Sbeghen, A. L., Colla, L. M., Castoldi, V., Seguenka, B., Schimidt, G.D., & Costa, J.A.V. (2020). Is downstream ultrafiltration enough for production of food-grade phycocyanin from Arthrospira platensis? Journal of Applied Phycology, 32, 1129–1140. https://doi.org/10.1007/s10811-019-02006-1
Bortolini, D. G., Maciel, G. M., Fernandes, I. D. A. A., Pedro, A. C., Rubio, F. T. V., Brancod, I. G., & Haminiuk, C. W. I. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5, 1-12. https://doi.org/10.1016%2Fj.fochms.2022.100134
Bradford, N. A. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Camargo, S. B., & Vasconcelos, D. F. S. A. D. (2014). Atividades biológicas de Linalol: conceitos atuais e possibilidades futuras deste monoterpeno. Revista de Ciências Médicas e Biológicas, 13(3), 381-387. http://dx.doi.org/10.9771/cmbio.v13i3.12949
Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426-442.
Dewi, E. N., Kurniasih, R. A., & Purnamayati, L. (2018, Oktober 2-4). The application of microencapsulated phycocyanin as a blue natural colorant to the quality of jelly candy. [Conference session]. 3rd International Conference on Tropical and Coastal RegionEco development 2017 2-4 October, Yogyakarta Indonesia. IOP Conference Series: Earth and Environmental Science. http://doi.org/10.1088/1755-1315/116/1/012047
Duong-Ly K. C., & Gabelli S. B. (2014). Salting out of proteins using amonium sulfate precipitation. Methods Enzymol, 541, 85-94. https://doi.org/10.1016/B978-0-12-420119-4
El-Soud, N. H. A., Deabes, M., El-Kassem, L.A., & Khalil, M. (2015). Chemical composition and antifungal activvity of Ocimum basilicum L. essential oil. Journal of Medical Science, 3(3), 374-379. https://doi.org/10.3889%2Foamjms.2015.082
Figueira, F. S., Moraes, C. C., & Kalil, S. J. (2018). C-phycocyanin purification: multiple processes for different applications. Brazilian Journal of Chemical Engineering, 35(3), 1117–1128. http://dx.doi.org/10.1590/0104-6632.20180353s20170160
García, A. B., Longo, E., & Bermejo, R. (2021). The application of a phycocyanin extract obtained from Arthrospira platensis as a blue natural colorant in beverages. Journal of Applied Phycology, 33(5), 3059-3070. https://doi.org/10.1007/s10811-021-02522-z
Garcia-Pliego, E., Franco-Colin, M., Rojas-Franco, P., Blas-Valdivia, V., Serrano-Contreras, J. I., Pentón-Rol, G., & Cano-Europa, E. (2021). Phycocyanobilin is the molecule responsible for the nephroprotective action of phycocyanin in acute kidney injury caused by mercury. Food & Function, 12(7), 2985-2994. https://doi.org/10.1039/d0fo03294h
Hadiani, E. T., Amalia, U., & Agustini, T.W. (2019, September 17-18). The effect of basil (Ocimum basilicum i.) leaf extract in immersion stage against profile of volatile compound on Spirulina platensis powder. [Conference Session]. The 4th International Conference on Tropical and Coastal Region Eco Development, Semarang, Indonesia. IOP Conference series: Earth and Environmental Science. http://dx.doi.org/10.1088/1755-1315/246/1/012057
Kang, B., Tang, H., Zhao, Z., & Song, S. (2020). Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS omega, 5(12), 6229-6239.
Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2019). Phycobiliproteins and their commercial significance. In Cyanobacteria (pp. 207-216). Academic Press.
Karso, Wuryanti, & Sriatun. (2014). Isolasi dan karakterisasi kitinase isolate jamur akuatik kitinolitik KC3 dari kecoa (Orthoptera). Jurnal Kimia Sains dan Aplikasi, 17(2), 51-57.
Kuddus, M., Singh, P., Thomas, G., & Al-Hazimi, A. (2013). Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Research International, 2013, 742-859. https://doi.org/10.3109/1040841X.2012.678477
Kumar, D., Dhar, D. W., Pabbi, S., Kumar, N., & Walia, S. (2014). Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian Journal of Plant Physiology, 19(2), 184–188. https://doi.org/10.1007/s40502-014-0094-7
Lauceri, R., Zittelli, G. C., & Torzillo, G. (2019). A simple method for rapid purification of phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass. Algal Research, 44, 1-11. https://doi.org/10.1016/j.algal.2019.101685
Liu, Y., Liu, X., Cui, Y., & Yuan, W. (2022). Ultrasound for microalgal cell disruption and product extraction: A review. Ultrasonics Sonochemistry, 87, 1-18. https://doi.org/10.1016/j.ultsonch.2022.106054
Mauliasari, E. S., Agustini, T. W., & Amalia, U. (2019.) Stabilisasi fikosianin Spirulina platensis dengan perlakuan mikroenkapsulasi dan pH. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(3), 526-534.
Morone, J., Alfeus, A., Vasconcelos, V., & Martins, R. (2019). Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals—A new bioactive approach. Algal Research, 41, 1-41 https://doi.org/10.1016/j.algal.2019.101541
Mysliwa-Kurdziel, B., & Solymosi, K. (2017). Phycobilins and phycobiliproteins used in food industry and medicine. Mini reviews in medicinal chemistry, 17(13), 1173-1193.
Nasution, U. J., Wijaya, S. M., Wibisana, A., & Suyanto, S. (2016). Pemurnian enzim sefalosporin-C asilase dan optimasi proses kromatografi penukar ion. Bioteknologi dan Biosains Indonesia, 5(2), 119-126.
Nefasa, A. N., Wulandari, E. C., Christwardana, M., & Hadiyanto, H. (2020). Quality of macronutrient of cow's milk with addition of soybean oil and phycocyanin extract as functional food. Food Science Technology, 3(2), 1-17. http://dx.doi.org/10.25139/fst.v3i2.3139
Newsome, A. G., Culver, C. A., & Van Breemen, R. B. (2014). Nature’s palette: the search for natural blue colorants. Journal of Agricultural and Food Chemistry, 62(28), 6498-6511. http://dx.doi.org/10.1021/jf501419q
Nisticò, D. M., Piro, A., Oliva, D., Osso, V., Mazzuca, S., Fagà, F.A., Morelli, R., Conidi, C., Figoli, A., & Cassano, A. (2022). A combination of aqueous extraction and ultrafiltration for the purification of phycocyanin from Arthrospira maxima. Microorganisms, 10(308), 1-14. https://doi.org/10.3390/microorganisms10020308
Pandey, V. D., Pandey, A., & Sharma, V. (2013). Biotechnological applications of cyanobacterial phycobiliproteins. International Journal of Current Microbiology and Applied Sciences, 2(9), 89-97.
Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C-M., Ferruzzi, M.G., & Ahn, M. J. (2018). Two classes of pigments, carotenoids and c-phycocyanin, in Spirulina powder and their antioxidant activities. Molecules, 23(8), 1-11. https://doi.org/10.3390/molecules23082065
Razus, A. C. (2023). Azulene, reactivity, and scientific interest inversely proportional to ring size; part 1: the five-membered ring. Symmetry, 15(2), 1-40. https://doi.org/10.3390/sym15020310
Rito-Palomares, M., Nunez, L., & Amador, D. (2001). Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. Journal of Chemical Technology & Biotechnology, 76(12), 1273–1280. https://doi.org/10.1002/jctb.507
Rodrigues, E. F., Vendruscolo, L. P., Bonfante, K., Reinehr, C. O., Colla, E., & Colla, L. M. (2019). Phycocyanin as substitute for texture ingredients in ice creams. British Food Journal, 122(2), 693-707. https://doi.org/10.1108/BFJ-07-2019-0553
Sala, L., Moraes, C. C., & Kalil, S. J. (2018). Cell pretreatment with ethylenediaminetetraacetic acid for selective extraction of C‐phycocyanin with food grade purity. Biotechnology Progress, 34(5), 1261-1268. https://doi.org/10.1002/btpr.2713
Schwierz, N., Horinek, D., Sivan, U., & Netz, R. R. (2016). Reversed hofmeister series—the rule rather than the exception. Current Opinion in Colloid & Interface Science, 23, 10-18. https://doi.org/10.1016/j.cocis.2016.04.003
Silva, L. A., Kuhn, K. R., Moraes, C. C., Burkert, C. A., & Kalil, S. J. (2009). Experimental design as a tool for optimization of C-phycocyanin purification by precipitation from Spirulina platensis. Journal of the Brazilian Chemical Society, 20(1), 5-12. http://dx.doi.org/10.1590/S0103-50532009000100003
Silveira, S. T. J. F. M., Burkert, J. A. V., Costa, C. A. V., Burket, S. J. Kalil. (2007). Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98(8), 1629-1634. https://doi.org/10.1016/j.biortech.2006.05.050
Song, W., Zhao, C., & Wang, S. (2013). A large-scale preparation method of high purity C-phycocyanin. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4), 293-297. https://doi.org/10.7763/IJBBB.2013.V3.216
Su, R., Guo, P., Zhang, Z., Wang, J., Guo, X., Guo, D., Wang, Y., Liu, Q., & Shi, C. (2022). Antibacterial activity and mechanism of linalool against shigella sonnei and its application in lettuce. Foods, 11(20), 1-14. https://doi.org/10.3390/foods11203160
Wingfield P. (2001). Protein precipitation using ammonium sulfate. Current Protocols in Protein Science, Appendix 3, Appendix–3F. https://doi.org/10.1002/0471140864.psa03fs13.
Yamaguchi, Y. M., Takubo, K., Ogawa, K., Nakayama, T., Koganezawa, & Katagiri, H. (2016). Tatrazulene isomers: polarity change of ofets through moleculer orbital distibution contrast. Journal of The American Chemical, 138(35), 11335-11343. https://doi.org/10.1021/jacs.6b06877
Yuliani, Y., Riyadi, P.H., Dewi, E.N., Jaswir, I., & Agustini TW. (2021). Ocimum basilicum (kemangi) intervention on powder and microencapsulated Spirulina platensis and its bioactive molecules. F1000 Research, 10(485), 1-18. https://doi.org/10.12688/f1000research.52394.3
Yuliani, T. W. Agustini, E. N. Dewi. (2019). Intervensi Ocimum basilicum L. pada serbuk dan mikroenkapsulasi Spirulina platensis terhadap protein dan karakteristik sensorik. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(2), 225-235. http://dx.doi.org/10.17844/jphpi.v23i2.31126

Authors

Yuliani Yuliani
yuliyani234@gmail.com (Primary Contact)
Tri Winarni Agustini
Eko Nurcahya Dewi
Diana Nur Afifah
YulianiY., AgustiniT. W., DewiE. N., & AfifahD. N. (2023). Purifikasi fikosianin dari Spirulina platensis hasil intervensi kemangi (Ocimum basilicum) pada konsentrasi amonium sulfat berbeda: Purification of phycocyanin from Spirulina platensis with basil (Ocimum basilicum) intervention on different ammonium sulphate concentration. Jurnal Pengolahan Hasil Perikanan Indonesia, 26(3), 448-459. https://doi.org/10.17844/jphpi.v26i3.46208

Article Details