Degradasi hidrotermal Kappaphycus alvarezii: Karakter hidrolisat dan kapabilitas sebagai prebiotik Hydrothermal degradation of Kappaphycus alvarezii: Hydrolysate characteristics and capabilities as prebiotics

Mutmainnah Mutmainnah, Desniar Desniar, Joko Santoso

Abstract

Seaweed Kappaphycus alvarezii as the largest source of polysaccharides from the sea can be a source of prebiotics but is still underutilized. Therefore, this study aimed to determine the effect of heat treatment on the hydrolysate of K. alvarezii and the effectiveness of the addition of the hydrolysate on the characteristics of synbiotic products based on milk fermentation with Lactobacillus plantarum IFO 3074. This study consisted of two stages, namely hydrolysis using a temperature factor (80, 90 and 100°C) and time (1, 2, and 3 hours) and the production of synbiotics based on milk fermentation with the addition of 0.2% seaweed hydrolysate. The results of the first stage of the study showed that the best treatment was 100°C for 3 hours with the highest amount of reducing sugar as an indicator of hydrolysis, which was 0.31 g/100 mL. Then the fermentation stage with addition of hydrolysate obtained microbiological characteristics (number of colonies) and chemical (total titrated acid, pH, and reducing sugar) which are generally significantly different and the value is 9.40 log cfu/mL; 0.28%; 4.48 and 66.78 g/100 mL. The increase in the characteristics of the fermented product with the addition of hydrolysate proves that the hydrolysis process can degrade seaweed polysaccharides into simple molecules (prebiotics) that can be utilized in the growth of probiotics, so that the addition of K. alvarezii hydrolysate has the potential to be developed as a synbiotic-based functional food with low production costs.

References

Adhani, S. W. (2021). Karakteristik yoghurt spirullina dengan starter Lactobacillus plantarum SK (5) pada perbedaan konsentrasi biomassa dan waktu inkubasi [skripsi]. Institut Pertanian Bogor.
Annunziata, G., Arnone, A., Ciampaglia, R, Tenore, G. C., & Novellino, E. (2020). Fermentation of foods and beverages as a tool for increasing availability of bioactive compounds: Focus on short-chain fatty acids. Foods. 9(8). doi:10.3390/foods9080999
Asikin, A. N., & Kusumaningrum, I. (2019). Karakteristik fisikokimia karaginan berdasarkan umur panen yang berbeda dari perairan Bontang, Kalimantan Timur. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(1). doi:10.17844/jphpi.v22i1.25890
Association Official Analytical Chemistry. (2005). Official method of analysis. 18th Ed. AOAC International
Badan Pusat Statistik. (2022). Statistik ekspor hasil perairan tahun 2017-2022. Diolah Direktorat Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan, Kementerian Kelautan dan Perikanan. Badan Pusat Statistik.
Badan Standardisasi Nasional. (2009). Minuman Susu Fermentasi Berperisa. SNI 7552-2009.
Behera, S. S., Ray, R. C., & Zdolec, N. (2018). Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. Biomed Res Int, 2018. doi:10.1155/2018/9361614
Balboa, E. M., Rivas, S., Moure, A., Domínguez, H., & Parajó, J. C. (2013). Simultaneous extraction and depolymerization of fucoidan from Sargassum muticum in aqueous media. Mar Drugs. 11(11), 4612–4627. doi:10.3390/md11114612
Bouanati, T., Colson, E., Moins, S., Cabrera, J. C., Eeckhaut, I., Raquez, J. M., & Gerbaux, P. (2020). Microwave-assisted depolymerization of carrageenans from Kappaphycus alvarezii and Eucheuma spinosum: Controlled and green production of oligosaccharides from the algae biomass. Algal Res, 51. doi:10.1016/j.algal.2020.102054
Cervantes-Cisneros, D. E., Arguello-Esparza D, Cabello-Galindo A, Picazo B, Aguilar CN, Ruiz HA, Rodriguez-Jasso RM. (2017). Hydrothermal processes for extraction of macroalgae high value-added compounds. In: Ruiz, H., Hedegaard Thomsen, M., & Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. doi:10.1007/978-3-319-56457-920
Decroli, E. (2019). Diabetes melitus tipe 2. Ed ke 1. Pusat Penerbitan Bagian Ilmu Penyakit Dalam Fakultas Kedokteran. Universitas Andalas.
Duan, F., Yu, Y., Liu, Z., Tian, L., & Mou, H. (2016). An effective method for the preparation of carrageenan oligosaccharides directly from Eucheuma cottonii using cellulase and recombinant κ-carrageenase. Algal Research, 15, 93–99. doi:10.1016/j.algal.2016.02.006
Eveline, Santoso, J., & Widjaja, I. (2011). Kajian konsentrasi dan rasio gelatin dari kulit ikan patin dan kappa karagenan pada pembuatan jeli. Jurnal Pengolahan Hasil Perikanan Indonesia. 14(2), 98−105. doi:10.17844/jphpi.v14i2.5318
Fateha, Wibowo, S., Santoso, J., Agusman, & Uju. (2019). Optimization of processing conditions of alkali treated cottonii (ATC) from sap-free Eucheuma cottonii. Squalen Bull. of Mar. and Fish. Postharvest and Biotech. 14(2), 65-72. doi:10. 15578/squalen.v14i2.397
Firdaus, M., Yahya, Nugraha, G. R. H., & Utari D. D. (2017). Fortification of seaweed (Eucheuma cottonii) flour on nutrition, iodine, and glycemic index of pasta. IOP Conf Ser Earth Environ Sci, 89(1). doi:10.1088/1755-1315/89/1/012011
Gereniu, C. R. N., Saravana, P. S., & Chun, B. S. (2018). Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Sep Purif Technol, 196, 309–317. doi:10.1016/j.seppur.2017.06.055
Gómez-Ordóñez, E., Jiménez-Escrig, A., & Rupérez, P. (2014). Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus. Bioact Carbohydrates Diet Fibre. 3(1), 29–40. doi:10.1016/j.bcdf.2014.01.002
Halimah, S. N., Suryani, R. A., Wijayanti, S. W., Pangestu, R. A., Deni, G. D., & Romadhon. (2016). Fortification seaweed noodles [Euchema cottonii (Weber-van Bosse, 1913)] with nano-calcium from bone catfish [Clarias batrachus (Linnaeus, 1758)]. Aquat Procedia, 7, 221–225. doi:10.1016/j.aqpro.2016.07.030
Huang, C. Y., Wu, S. J., Yang, W. N., Kuan, A. W., & Chen, C. Y. (2016). Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food Chem, 197, 1121–1129. doi:10.1016/j.foodchem. 2015.11.100
Kartik, A., Akhil, D., Lakshmi, D., Panchamoorthy Gopinath, K., Arun, J., Sivaramakrishnan, R., & Pugazhendhi, A. (2021). A critical review on production of biopolymers from algae biomass and their applications. Bioresour Technol. 329, 124868. doi:10.1016/J. BIORTECH.2021.124868
Malo, P. M., & Urquhart, E. A. (2015). Fermented foods: Use of starter cultures. Encyclopedia of Food and Health. 681-685, doi: 10.1016/B978-0-12-384947 2.00282-8
Martínez-Sanz, M., Gómez-Mascaraque, L. G., Ballester, A. R., Martínez-Abad, A., Brodkorb, A., & López-Rubio, A. (2019). Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res, 38,101420. doi:10.1016/j.algal.2019.101420
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31(3), 426–428. doi:10.1021/ac60147a030
Moody, S. D., Hanidah, I. I., Kayaputri, I. L., Rialita, T., Sukarminah, E., & Zakaria, R. A. P. (2019). Microencapsulation of Lactobacillus acidophilus with freeze drying method and application to synbiotic beverage of banana corm stone. Int J Adv Sci Eng Inf Technol, 9(2), 532–537. doi:10.18517/ijaseit.9.2.7903
Morimoto M, Takatori M, Hayashi T, Mori D, Takashima O, Yoshida S, Sato K, Kawamoto H, Tamura JI, Izawa H, et al., (2014). Depolymerization of sulfated polysaccharides under hydrothermal conditions. Carbohydr Res, 384, 56–60. doi:10.1016/J.CARRES. 2013.11.017
O’Sullivan, A. M., O’Grady, M. N., O’Callaghan, Y. C., Smyth, T. J., O’Brien, N. M., & Kerry, J. P. (2016). Seaweed extracts as potential functional ingredients in yogurt. Innov Food Sci Emerg Technol, 37 PB, 293–299. doi:10.1016/j.ifset.2016.07.031
Pangestuti, R., & Kim, S. K. (2014). Biological Activities of Carrageenan. Ed ke-1. Volume ke-72. Elsevier Inc. doi:10.1016/B978-0-12-800269-8.00007-5#
Peraturan Presiden Republik Indonesia. (2019). Peta Panduan (Road Map) Pengembangan Industri Rumput Laut Nasional Tahun 2018-2021. Indonesia: Sekretariat Kabinet RI, Deputi Bidang Kemaritiman.
Permatasari, V. R. (2018). Pemanfaatan rumput laut Eucheuma cottonii untuk memproduksi galakto-oligosakarida [tesis]. Institut Pertanian Bogor.
Rahim, F. A., Wasohm H., Zakaria, M. R., Ariff, A., Kapri, R., Ramli, N., & Siew-Ling, L. (2014). Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocolloids, 42(2), 309-315. doi:10.1016/j.foodhyd.2014.05.017
Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M., & Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res Int, 99, 1066–1083. doi:10.1016/j.foodres. 2016.08.016
Saravana, P. S., Cho, Y. N., Patil, M. P., Cho, Y. J., Kim, G. D., Park, Y. B., Woo, H. C., & Chun, B. S. (2018). Hydrothermal degradation of seaweed polysaccharide: Characterization and biological activities. Food Chem, 268 January, 179–187. doi:10.1016/j. foodchem.2018.06.077
Setyaningsih, D., Musdaniaty, D., & Muna, N. (2019). Produksi bubuk sinbiotik dari hidrolisat Eucheuma cottonii menggunakan spray drying. J Teknol Ind Pertan, 29(3), 233–239. doi:10.24961/j.tek.ind.pert.2019.29.3.233
Simatupang, N. F., Pong-Masak, P. R., Ratnawati, P., Agusman, Paul, N. A., & Rimmer, M. A. (2021). Growth and product quality of the seaweed Kappaphycus alvarezii from different farming locations in Indonesia. Aquaculture reports. doi: 10.1016/ j.aqrep.2021.100685
Siregar, R. F., Santoso, J., & Uju, U. (2016). Physico chemical characteristic of kappa carrageenan degraded using hydrogen peroxide. Jurnal Pengolahan Hasil Perikanan Indonesia, 9(3). doi:10.17844/jphpi.v19i3.15085
Sudirman, S., Hsu, Y. H., He, J. L., & Kong, Z. L. (2018). Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodiuminduced colitis in mice. PLoS One, 13(10), 1–15. doi:10.1371/journal.pone.0205252
Sukotjo, S., Syarafina, A., & Irianto, H. (2020). The effect of seaweed (Eucheuma cottonii) and tofu dregs formula on chocolate pudding. IOP Conf Ser Earth Environ Sci, 439(1), 012052. doi:10.1088/1755-1315/439/1/012052
Sulaiman, N. B. (2016). Kualitas sosis fermentasi domba dengan penambahan probiotik Lactobacillus plantarum IIA-2C12 atau Lactobacillus acidophilus IIA-2B4 [tesis]. Institut Pertanian Bogor.
Suriyani, S., Yusuf, R., & Syakur, A. (2018). Waste application of seaweed (Eucheuma cottonii) on plant growth and results of mustard (Brassica juncea L.). Agrol Agric Sci J, 4(2), 83. doi:10.22487/j24077593.2017.v4.i2.9543
Surono, I. S., & Hosono, A. (2011). Fermented milks: types and standards of identity. Encycl Dairy Sci Second Ed. December 2011: 470–476. doi:10.1016/B978-0-12-374407-4.00180-1
Trilaksani, W., Setyaningsih, I., & Masluha, D. (2015). Formulation of red seaweed and spirulina platensis based jelly drinks. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(1). doi: 10.17844/jphpi.v18i1.9565
University of Calivornia Davis. (2018). Lactobacillus plantarum. Department of Viticulture and Enology. https://wineserver.ucdavis.edu/ industry-info/enology/wine-microbiology/bacteria/lactobacillus-plantarum
Yu, G., Zhang, Q., Wang, Y., Yang, Q., Yu, H., Li, H., Chen, J., & Fu, L. (2021). Sulfated polysaccharides from red seaweed Gelidium amansii: Structural characteristics, anti-oxidant and anti-glycation properties, and development of bioactive films. Food Hydrocoll. 119 March, 106820. doi:10.1016/j.foodhyd.2021.106820
Zelvi, M. (2017). Hidrolisis Eucheuma cottonii dengan enzim κ-karagenase dalam menghasilkan gula reduksi untuk produksi bioetanol [tesis]. Bogor: Institut Pertanian Bogor.

Authors

Mutmainnah Mutmainnah
utmamutmainnah@apps.ipb.ac.id (Primary Contact)
Desniar Desniar
Joko Santoso
MutmainnahM., DesniarD., & SantosoJ. (2023). Degradasi hidrotermal Kappaphycus alvarezii: Karakter hidrolisat dan kapabilitas sebagai prebiotik: Hydrothermal degradation of Kappaphycus alvarezii: Hydrolysate characteristics and capabilities as prebiotics. Jurnal Pengolahan Hasil Perikanan Indonesia, 26(1), 13-24. https://doi.org/10.17844/jphpi.v26i1.43568

Article Details