Kapasitas Antioksidan dan Sifat Fisikokimia Hidrolisat Kolagen dari Kulit Ikan Tuna Sirip Kuning dengan Metode Ultrasound Assisted Enzymatic Reaction The Antioxidant Capacity and Physicochemical Properties of Yellowfin Tuna Skin Collagen Hydrolysate Using Ultrasound-Assisted Enzymatic Hydrolysis

Raden Hilman Wirayudha, Dian Herawati, Feri Kusnandar, Tati Nurhayati

Abstract

Pepsin soluble collagen hydrolysate from yellowfin tuna skin is a derivative product obtained from the hydrolysis of pepsin soluble collagen using a combination of enzymatic extraction process with protease enzymes (Alcalase®) and physical extraction using ultrasonication method. Collagen hydrolysate has many advantages, especially in its wide use and better physicochemical characteristics and functional properties compared to collagen. The aims of this study were to produce collagen pepsin from yellowfin tuna skin, to evaluate the effect of sonication time and concentration of alcalase enzyme to obtain the optimum hydrolysate product, to compare the physicochemical characteristics and antioxidant capacity of pepsin soluble collagen and its hydrolysate. The pepsin soluble collagen was obtained by acid extraction using acetic acid and pepsin enzyme with a concentration of 750 U/mg. Data analysis to determine optimum hydrolysis conditions using a factorial completely randomized design with two factors. The optimum collagen hydrolysate with the highest degree of hydrolysis, as well as antioxidant inhibition of the DPPH and ABTS methods, was obtained with the addition of 2:20 Alcalase® enzyme (enzyme/mg protein) treatment with a hydrolysis time of 2 hours using the ultrasonication method. The hydrolysis process of collagen into its hydrolysate can improve its physicochemical characteristics and antioxidant capacity, including a lower molecular weight of up to 5 kDa, increased total amino acids up to 56.93%, increased water solubility up to 99.54%, and higher antioxidant capacity inhibition on DPPH method with IC50 of 77.2 mg/L and ABTS method with IC50 of 40.72 mg/L.

References

Association of Official Analytical Chemists. (2012). Official Methods of Analysis of the Association of Official Analytical Chemists. AOAC.
Adeleke, R. O., & Odedeji, J. O. (2010). Functional properties of wheat and sweet potato flour blends. Pakistan Journal of Nutrition, 9(6), 535–538. https://doi.org/10.3923/PJN.2010.535.538
Akram, A. N., & Zhang, C. (2019). Effect of ultrasonication on the yield, functional and physicochemical characteristics of collagen-II from chicken sternal cartilage. Food Chemistry, 307, 125544–125544. https://doi.org/10.1016/J.FOODCHEM.2019.125544
Ali, A. M. M., Kishimura, H., & Benjakul, S. (2018). Extraction efficiency and characteristics of acid and pepsin soluble collagens from the skin of golden carp (Probarbus jullieni) as affected by ultrasonication. Process Biochemistry, 66, 237–244. https://doi.org/10.1016/J.PROCBIO.2018.01.003
Ambigaipalan, P., Al-Khalifa, A. S., & Shahidi, F. (2015). Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods, 18, 1125–1137. https://doi.org/10.1016/J.JFF.2015.01.021
Apriyantono, A., Ferdiaz, D., Puspitasari, N., Sedarnawati, & Budiyanto, S. (1985). Analisis Pangan. PAU Pangan dan Gizi, Institut Pertanian Bogor.
Araujo, J., Sica, P., Costa, C., & Márquez, M. C. (2021). Enzymatic hydrolysis of fish waste as an alternative to produce high value-added products. Waste and Biomass Valorization, 12(2), 847–855. https://doi.org/10.1007/S12649-020-01029-X
Benjakul, S., Karnjanapratum, S., & Visessanguan, W. (2018). Production and characterization of odorless antioxidative hydrolyzed collagen from seabass (Lates calcarifer) skin without descaling. Waste and Biomass Valorization, 9(4), 549–559. https://doi.org/10.1007/S12649-017-0008-9
Blanco, M., Vázquez, J. A., Pérez-Martín, R. I., & Sotelo, C. G. (2017). Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry byproducts. Marine Drugs, 15(5). https://doi.org/10.3390/MD15050131
Davison-Kotler, E., Marshall, W. S., & García-Gareta, E. (2019). Sources of collagen for biomaterials in skin wound healing. Bioengineering, 6(3). https://doi.org/10.3390/BIOENGINEERING6030056
Guerra-Almonacid, C. M., Torruco-Uco, J. G., Murillo-Arango, W., Méndez-Arteaga, J. J., & Rodríguez-Miranda, J. (2019). Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emirates Journal of Food and Agriculture, 31(4), 288–296. https://doi.org/10.9755/EJFA.2019.V31.I4.1938
Han, T., Wang, M., Wang, Y., & Tang, L. (2020). Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. LWT, 130, 109560. https://doi.org/10.1016/J.LWT.2020.109560
Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., & Mamot, S. (2010). The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal, 17(1), 147–152.
Ibrahim, E. S. K., & Ghani, M. A. (2020). The effect of enzymatic hydrolysis on the antioxidant activities and amino acid profiles of defatted chia (Salvia hispanica L.) flour. Food Research, 4, 38–50. https://doi.org/10.26656/FR.2017.4(S4).003
Jiang, L., Wang, J., Li, Y., Wang, Z., Liang, J., Wang, R., Chen, Y., Ma, W., Qi, B., & Zhang, M. (2014). Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 62, 595–601. https://doi.org/10.1016/J.FOODRES.2014.04.022
Jongjareonrak, A., Benjakul, S., Visessanguan, W., Nagai, T., & Tanaka, M. (2005). Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chemistry, 93(3), 475–484. https://doi.org/10.1016/J.FOODCHEM.2004.10.026
Jridi, M., Lassoued, I., Nasri, R., Ayadi, M. A., Nasri, M., & Souissi, N. (2014). Characterization and potential use of cuttlefish skin gelatin hydrolysates prepared by different microbial proteases. BioMed Research International, 2014. https://doi.org/10.1155/2014/461728
Kementerian Kelautan dan Perikanan. (2018). Profil Peluang Investasi Komoditas Tuna, Laporan Tahunan 2018.
Ketnawa, S., Martínez-Alvarez, O., Benjakul, S., & Rawdkuen, S. (2016). Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chemistry, 192, 34–42. https://doi.org/10.1016/J.FOODCHEM.2015.06.087
Khiari, Z., Ndagijimana, M., & Betti, M. (2014). Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poultry Science, 93(9), 2347–2362. https://doi.org/10.3382/PS.2014-03953
Kusnandar, F. (2010). Kimia Pangan : Komponen Makro. Dian Rakyat.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680A0
Li, Z. R., Wang, B., Chi, C. feng, Zhang, Q. H., Gong, Y. dan, Tang, J. J., Luo, H. yu, & Ding, G. fang. (2013). Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocolloids, 31(1), 103–113. https://doi.org/10.1016/J.FOODHYD.2012.10.001
Liu, D., Liang, L., Regenstein, J. M., & Zhou, P. (2012). Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemistry, 133(4), 1441–1448. https://doi.org/10.1016/J.FOODCHEM.2012.02.032
Liu, Liu, C.-E., Lorena, D., Zhang, X., & Fu, Z. (2012). Evaluation of the antioxidant activity of collagen peptide additive extracted from cod skin. Journal of Environmental Protection and Ecology, 13(3A), 1836–1841.
Mosquera, M., Giménez, B., Ramos, S., López-Caballero, M. E., Gómez-Guillén, M. del C., & Montero, P. (2016). Antioxidant, ACE-inhibitory, and antimicrobial activities of peptide fractions obtained from dried giant squid tunics. Journal of Aquatic Food Product Technology, 25(3), 444–455. https://doi.org/10.1080/10498850.2013.819543
Nantitanon, W., Chowwanapoonpohn, S., & Okonogi, S. (2007). Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Scientia Pharmaceutica, 75(1), 35–54. https://doi.org/10.3797/SCIPHARM.2007.75.35
Nilsuwan, K., Fusang, K., Pripatnanont, P., & Benjakul, S. (2022). Properties and characteristics of acid-soluble collagen from salmon skin defatted with the aid of ultrasonication. Fishes 2022, Vol. 7, Page 51, 7(1), 51. https://doi.org/10.3390/FISHES7010051
Nurhayati, T., Nurjanah., Abdullah A., & Baharuddin T, I. (2021). Metode Ekstraksi Kolagen dari Kulit Ikan menggunakan Enzim Pepsin dari Lambung Ikan. [paten]. Kementerian Hukum dan Hak Asasi Manusia Republik Indonesia.
Nurilmala, M., Hizbullah, H. H., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus albacares) Skin. Marine Drugs 2020, Vol. 18, Page 98, 18(2), 98. https://doi.org/10.3390/MD18020098
Nurjanah, Baharuddin, T. I., & Nurhayati, T. (2021). Ekstraksi kolagen kulit ikan tuna sirip kuning (Thunnus albacares) menggunakan enzim pepsin dan papain. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(2), 174–187. https://doi.org/10.17844/JPHPI.V24I2.35410
Pham, A., Ky, X., Vy, B., Ha, V., Khanh Hy, H., Hong, T., Thiet, T., Anh, P., Xuan Ky, P., Bao Vy, P., Viet Ha, D., Ho Khanh Hy, L., Thu Hong, N., Thi Thiet, D., & Phuong Anh, N. (2018). Investigation of protein patterns and antioxidant activity of collagen hydrolysates from skin of Fan-bellied leatherjacket Monacanthus chinensis by various enzymes. Journal of Marine Science and Technology, 18(4A), 141–150. https://doi.org/10.15625/1859-3097/18/4A/13642
Sae-leaw, T., & Benjakul, S. (2018). Antioxidant activities of hydrolysed collagen from salmon scale ossein prepared with the aid of ultrasound. International Journal of Food Science & Technology, 53(12), 2786–2795. https://doi.org/10.1111/IJFS.13891
Schmidt, M. M., Dornelles, R. C. P., Mello, R. O., Kubota, E. H., Mazutti, M. A., Kempka, A. P., & Demiate, I. M. (2016). Collagen extraction process. International Food Research Journal, 23(3), 913–922.
Shon, J., Eun, J. B., Eo, J. H., & Hwang, S. J. (2011). Effect of processing conditions on functional properties of collagen powder from skate (Raja kenojei) skins. Food Science and Biotechnology, 20(1), 99–106. https://doi.org/10.1007/S10068-011-0014-9
Umi, H., Qhairul, A., Nor Qhirul, I., & Hasmadi, M. (2019). Properties of hydrolysed collagen from the skin of milkfish (Chanos chanos) as affected by different enzymatic treatments. International Journal of Research Science & Management, 6(2), 34–41. https://doi.org/10.5281/ZENODO.2572454
Vidal, A. R., Cansian, R. L., Mello, R. de O., Kubota, E. H., Demiate, I. M., Zielinski, A. A. F., & Dornelles, R. C. P. (2019). Effect of ultrasound on the functional and structural properties of hydrolysates of different bovine collagens. Food Science and Technology, 40(2), 346–353. https://doi.org/10.1590/FST.00319
Wang, B., Wang, Y. M., Chi, C. F., Luo, H. Y., Deng, S. G., & Ma, J. Y. (2013). Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Marine Drugs, 11(11), 4641–4661. https://doi.org/10.3390/MD11114641
Yang, H., Gao, J., Yang, A., & Chen, H. (2015). The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Research International, 77, 704–710. https://doi.org/10.1016/J.FOODRES.2015.01.011
Yang, X., Li, Y., Li, S., Oladejo, A. O., Wang, Y., Huang, S., Zhou, C., Ye, X., Ma, H., & Duan, Y. (2018). Effects of ultrasound-assisted α-amylase degradation treatment with multiple modes on the extraction of rice protein. Ultrasonics Sonochemistry, 40, 890–899. https://doi.org/10.1016/J.ULTSONCH.2017.08.028
Zhao, F., Zhai, X., Liu, X., Lian, M., Liang, G., Cui, J., Dong, H., & Wang, W. (2021). Effects of high-intensity ultrasound pretreatment on structure, properties, and enzymolysis of walnut protein isolate. Molecules 2022, Vol. 27, Page 208, 27(1), 208. https://doi.org/10.3390/MOLECULES27010208

Authors

Raden Hilman Wirayudha
Dian Herawati
dian@apps.ipb.ac.id (Primary Contact)
Feri Kusnandar
Tati Nurhayati
WirayudhaR. H., HerawatiD., KusnandarF., & NurhayatiT. (2022). Kapasitas Antioksidan dan Sifat Fisikokimia Hidrolisat Kolagen dari Kulit Ikan Tuna Sirip Kuning dengan Metode Ultrasound Assisted Enzymatic Reaction: The Antioxidant Capacity and Physicochemical Properties of Yellowfin Tuna Skin Collagen Hydrolysate Using Ultrasound-Assisted Enzymatic Hydrolysis . Jurnal Pengolahan Hasil Perikanan Indonesia, 25(3), 393-404. https://doi.org/10.17844/jphpi.v25i3.43325

Article Details