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Abstract. In this paper, we investigate regulation properties
pertaining to SIMO LTI systems, in which objective function of
regulated response is minimized jointly with the control effort. We
provide the closed-form solution of the H2 optimal regulation per-
formance for unstable/non-minimum phase continuous-time and
discrete-time systems. A direct implication of our main result in-
cludes the energy regulation performance of minimum phase time
delay systems.
Keywords: Performance limitations, H2 optimal control, SIMO
systems, unstable/non-minimum phase systems.

1. Introduction

The study on control performance limitations achievable by feedback
control systems is one of the important research topics in control theory,
and it has been paid much attention in the recent years [1]–[6]. In this
study certain classical optimal problems are examined under optimality
criteria formulated in time or frequency domain, which have led to
closed-form solutions of the best achievable performance. One of such
well-studied problems is the optimal regulation problem.

The optimal regulation performance is measured by minimizing the
energy of control input, or by minimizing the energy of control in-
put jointly with the energy of system output. We call the former the
energy regulation problem and the latter the output regulation prob-
lem. Results on H2 energy regulation problem can be found in [5]
for continuous-time system and in [4] for discrete-time system. Both
results are conducted for unstable/non-minimum phase SISO/SIMO
plants. Equivalent results in minimum phase SISO systems but artic-
ulated in term of signal-to-noise ratio constrained channels are in [1].
Meanwhile, result on H2 output regulation problem is presented in [3]
for unstable/minimum phase SISO/MIMO continuous-time systems.

This paper discusses the output regulation problem of unstable/non-
minimum phase SIMO continuous-time and discrete-time systems. An
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Figure 1. The regulation scheme.

implication relates to energy regulation problem of time delay systems
is provided.

The rest of this paper is organized as follows. In Section 2 we describe
the notation and state some preliminaries. Section 3 provides a closed-
form solution of the optimal regulation performance for continuous-
time systems, and that of discrete-time systems is given in Section 4.
An implication of the main result to time delay systems is given in
Section 5. Some concluding statements are in Section 6.

2. Preliminaries

We give a brief description of the notation used throughout this
report. We denote the real set by R and the complex set by C. For
any c ∈ C, its complex conjugate is denoted by c̄. For any vector u we
shall use uT , uH , and ‖u‖ as its transpose, conjugate transpose, and
Euclidean norm, respectively. We call the one-dimensional subspace
spanned by u the direction of u. For any matrix A ∈ C

m×n, we denote
its conjugate transpose by AH and its column space by R[A]. The
cardinality of a set S is denoted by #S. In s-domain analysis, i.e.,
continuous-time case, let the open left half plane be denoted by C− :=
{s ∈ C : Re s < 0}, the open right half plane by C+ := {s ∈ C :
Re s > 0}, and the imaginary axis by C0. And for any matrix function
f ∈ C

m×n we define f∼(s) := fT (−s). For any signal x(t), t > 0, we
define its Laplace transform x̂(s) by

x̂(s) = L{x(t)} :=

∫ ∞

0

x(t)e−st dt.

While in z-domain analysis, i.e., discrete-time case, the unit circle is
denoted by ∂D := {z ∈ C : |z| = 1}. We also define the following
sets: D := {z ∈ C : |z| < 1}, D

c := {z ∈ C : |z| ≥ 1}, and D
c :=

{z ∈ C : |z| > 1}. Clearly, D and D
c respectively can be seen as the

regions inside and outside unit circle. Furthermore, we define f∼(z) :=
fT (z−1). For any sequence x(k), k = 0, 1, . . ., we define its Z transform
x̂(z) by

x̂(z) = Z{x(k)} :=
∞

∑

k=0

x(k)z−k.

The standard setup under consideration in this paper is the SIMO
feedback system depicted in Fig. 1, where P represents the plant, K the
stabilizing compensator, and Wy the stable/minimum phase weighting
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function. The signals d ∈ R, u ∈ R, y ∈ R
m, and yw ∈ R

m are
the disturbance input, the plant input, the system output, and the
weighted system output, respectively.

For the plant rational transfer function P , its left and right coprime
factorization be given by

P = NM−1 = M̃−1Ñ , (1)

where N,M, Ñ, M̃ ∈ RH∞ and they satisfy the double Bezout identity

[

X̃ −Ỹ

−Ñ M̃

] [

M Y
N X

]

= I (2)

for some X,Y, X̃, Ỹ ∈ RH∞. All the stabilizing compensators K can
be characterized by

K := {K : K = (Y − MQ)(NQ − X)−1

= (QÑ − X̃)−1(Ỹ − QM̃); Q ∈ RH∞}. (3)

A complex number z is said to be a zero of P if Pi(z) = 0. In
addition, if z lies either in C+ for s-domain or D

c for z-domain then
z is said to be a non-minimum phase zero. P is said to be minimum
phase if it has no non-minimum phase zero; otherwise, it is said to be
non-minimum phase. On the other hand, a complex number p is said
to be a pole of P if P (p) is unbounded. A pole p is said to be unstable
if it lies in C+ or D

c. P is said to be stable if it has no unstable pole;
otherwise, unstable. For technical reasons, it is assumed that the plant
does not have zeros and poles at the same location.

A transfer function N , not necessarily square, is called an inner if N
is in RH∞ and N∼N = I for all s = jω or z = ejθ and is called co-inner
if N ∈ RH∞ and NN∼ = I. A transfer function M is called outer if
M is in RH∞ and has a right inverse which is analytic in C+ or D

c.
For an arbitrary P ∈ RH∞,

P = ΛiΛo, (4)

where Λi is inner and Λo is outer, is defined as an inner-outer factor-
ization of P . We call Λi the inner factor and Λo the outer factor.

In subsequent analysis, we let P and K be

P = [P1, P2, . . . , Pm]T , (5)

K = [K1, K2, . . . , Km], (6)

with Pi and Ki, i = 1, . . . ,m, are scalar transfer functions. In the
present work, we consider an impulse function as the disturbance signal
d.
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3. Continuous-time Systems

Suppose that the plant P (s) is given in (5) and its coprime factor-
ization is given in (1). Without loss of generality we may set M = B,
where

B(s) =

Nλ
∏

i=1

s − λi

s + λ̄i

(7)

We denote by λi, i = 1, . . . , Nλ, the unstable poles of P (s). It is useful
to point out that B(∞) = 1.

We minimize the performance index

Ec :=

∫ ∞

0

(

‖yw(t)‖2 + |u(t)|2
)

dt, (8)

where yw(t) is the weighted system output, i.e.,

yw(t) = L−1{Wy(s)ŷ(s)}.

In order for Ec to be finite, it is necessary that P d̂ ∈ L2, where L2 is a
Hilbert space with an inner product

〈f1, f2〉 :=
1

2π

∫ π

−π

fH
1 (ejθ)f2(e

jθ) dθ. (9)

Since d(t) is an impulse function so that d̂(s) = 1, then we need the
following assumption.

Assumption 1. P (s) is strictly proper, i.e., P (∞) = 0.

This assumption implies that y(0) is finite, a necessary condition for
the output energy to be finite.

Theorem 1. Suppose that the plant P (s) has unstable poles λi, i =
1, . . . , Nλ and its coprime factorization is given by (1). Let define the
inner-outer factorization

[

WyN
−1

]

= ΛiΛo.

Then,
E∗

c = E1 + E2, (10)

where

E1 = 2

Nλ
∑

i=1

λi +
1

π

∫ ∞

0

log
(

1 + ‖Wy(jω)P (jω)‖2
)

dω

E2 =
∑

i,j∈N

4Re(zi)Re(zj)

b̄ibj(z̄i + zj)
(1 − Λo(zi)B

−1(zi))
H(1 − Λo(zj)B

−1(zj)),

with

bi =
∏

j∈N,j 6=i

zj − zi

zj + z̄i

,
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and N := {i : Ñ(zi) = 0, zi ∈ C+}.

Proof: The proof of E1 can be found in [3]. To prove E2, follow the
way in [5]. ¤

Theorem 1 shows that the regulation performance depends not only
on the plant unstable poles and non-minimum phase zeros but also on
its gain and a certain of outer factor. When Wy = 0, we have the
following result which is consistent with an existing result in [5].

Corollary 1. If Wy = 0 which implies Λo = 1, then

E∗
c = 2

Nλ
∑

i=1

λi +
∑

i,j∈N

4Re(zi)Re(zj)

b̄ibj(z̄i + zj)
(1 − B−1(zi))

H(1 − B−1(zj)).

4. Discrete-time Systems

In (1), it is possible to set M = B, where

B(z) =

Np
∏

i=1

z − pi

p̄iz − 1
, (11)

with pi, i = 1, . . . , Np, the unstable poles of P (z). Note that B(∞) =
∏Np

i=1
1
p̄i

, and d̂(z) = 1. Also note that in regulation problem of discrete-

time systems, we do not need a kind of Assumption 1. We minimize
the performance index

Ed :=
∞

∑

k=0

(

‖yw(k)‖2 + |u(k)|2
)

, (12)

where yw(k) is the weighted system output, i.e.,

yw(k) = Z−1{Wy(z)ŷ(z)}.

Lemma 1. If f is scalar transfer function and f(z) ∈ RH∞, then

1

π

∫ π

−π

Re{f(ejθ)} dθ = 2f(∞). (13)

Theorem 2. Suppose that P (z) has unstable poles pi, i = 1, . . . , Np

and its coprime factorization is given by (1). Let define the inner-outer
factorization

[

WyN
−1

]

= ΛiΛo.

Then,

E∗
d = E1 + E2, (14)
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where

E1 = |Λo(∞)|2
Np
∏

i=1

|pi|
2 − 1,

E2 =
∑

i,j∈N

(|si|
2 − 1)(|sj|

2 − 1)

b̄ibj(s̄isj − 1)
×

(

Λo(∞)B−1(∞) − Λo(si)B
−1(si)

)H
×

(

Λo(∞)B−1(∞) − Λo(sj)B
−1(sj)

)

,

with

bi =
∏

j∈N,j 6=i

si − sj

sis̄j − 1
,

and N := {i : Ñ(si) = 0, si ∈ D̄
c}.

Proof: From (1)–(3) we may express (12) as

Ed =

∥

∥

∥

∥

[

Wy(XÑ − NQÑ)

B−1Y Ñ − QÑ

]∥

∥

∥

∥

2

2

.

After a lengthy manipulation, we then can show that E∗
d = Ẽ1 + Ẽ2 +

Ẽ3 + Ẽ4, where

Ẽ1 :=

∥

∥

∥

∥

[

0
B−1(∞) − B−1

]∥

∥

∥

∥

2

2

,

Ẽ2 := |B−1(∞)|2‖Λ−H
o − Λo(∞)‖2

2,

Ẽ3 :=

∥

∥

∥

∥

[

WyN(ΛH
o Λo)

−1

1 − (ΛH
o Λo)

−1

]

B−1(∞)

∥

∥

∥

∥

2

2

,

Ẽ4 := inf
Q∈RH∞

‖ΛoR − Λo(∞)B−1(∞) − ΛoQÑ‖2
2,

with R = B−1Y Ñ + B−1. Direct calculation yields

Ẽ1 =

Np
∏

i=1

|pi|
2 − 1,

and additionally by application of Lemma 1 we get

Ẽ2 + Ẽ3 = (|Λo(∞)|2 − 1)

Np
∏

i=1

|pi|
2.

Therefore,

Ẽ1 + Ẽ2 + Ẽ3 = |Λo(∞)|2
Np
∏

i=1

|pi|
2 − 1 =: E1.

By following similar way in [4] we can show that Ẽ4 =: E2. ¤
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Next, we give two implications of Theorem 2 pertaining to the energy
regulation problem.

Corollary 2. If Wy = 0 which implies Λo = 1, then

E∗
d = E1 + E2, (15)

where

E1 =

Np
∏

i=1

|pi|
2 − 1,

E2 =
∑

i,j∈N

(|si|
2 − 1)(|sj|

2 − 1)

b̄ibj(s̄isj − 1)
×

(

B−1(∞) − B−1(si)
)H (

B−1(∞) − B−1(sj)
)

.

Corollary 3. If Wy = 0 and P (z) is strictly proper with relative degree
v, minimum phase, and has only one unstable pole p ∈ D̄

c, then

E∗
d = (p2 − 1)p2v. (16)

Proof: Since P has only one unstable pole, from (15) we get E1 = p2−
1. If P has relative degree 1 then E2 = (p2 − 1)2. And if, respectively,
P has relative degree 2 and 3 then E2 = (p2 − 1)2(1 + p2) and E2 =
(p2 − 1)2(1 + p2 + p4). In general, if P has relative degree v then

E2 = (p2 − 1)2

v
∑

k=1

p2(k−1) = (p2 − 1)(p2v − 1).

Hence, E1 + E2 = (p2 − 1)p2v, which proves (16). ¤

Theorem 2 shows that the expression of the optimal output regula-
tion performance shares close similarity with that of the optimal en-
ergy regulation performance in Theorem 2 of [4], which is reinvented by
Corollary 2. Except for the contribution of the outer function Λo, the
unstable poles and non-minimum phase zeros of the plant give their ef-
fects in an analogous fashion. Suppose that WyN = (AN , BN , CN , DN)
then

ΛiΛo =

[

WyN
−1

]

=

(

A B
C D

)

,

where A = AN , B = BN , C = [CN , 0]T , and D = [DN , −1]T . Further
the transfer function of Λo is

Λo(z) =

(

A B
DsF Ds

)

,

where Ds be an appropriate surjective matrix satisfying DT
s Ds =

DT D + BTPB, and F = (R + BTPB)−1(BTPA + ST ), with P is
the solution of discrete-time algebraic Riccati equation

P = ATPA + Q− (ATPB + S)(R + BTPB)−1(BTPA + ST ), (17)



40 TONI BAKHTIAR

−5 −4 −3
0

2

4

6

8
x 10

5

p

E
d*

−3 −2 −1 0
1000

2000

3000

4000

5000

6000

p

E
d*

via Theorem
via Toolbox

0 1 2
0

1

2

3

4
x 10

4

p

E
d*

2 3 4 5
0

5000

10000

15000

p

E
d*

Figure 2. E∗
d with respect to p.

where Q = CT C, R = DT D, S = CT D.
We then obtain

|Λo(∞)|2 = DT
s Ds = DT

NDN + 1 + BTPB.

Since P is positive semi-definite, |Λo(∞)|2 ≥ 1, which gives a knowledge
that Λo(∞) makes the regulation performance worse. This fact also
confirms that when the plant is stable and minimum phase, its optimal
regulation performance, i.e., E∗

d = |Λo(∞)|2 − 1 by Theorem 2, is non-
negative.

Example 1. We consider an SISO plant given by

P (z) =
(z − 2)(z + 3)

(z − 5)(z − p)
,

which has non-minimum phase zeros at z = 2 and z = −3, and unstable
poles at z = 5 and possibly at z = p. Fig. 2 plots Theorem 2 based
computation (circled-line) and toolbox-based computation (stared-line)
for p from −5 to 5. Here we set Wy(z) = 1.

5. Time Delay Systems

We consider the following continuous-time delay system

P (s) =
P0(s)

s − λ
e−τs, (18)

where P0(s) is biproper, minimum phase, stable, and possibly single-
input multiple-output, λ > 0 is the only unstable pole of P (s), and
τ ≥ 0 indicates the delay time. We minimize the performance index

Ec :=

∫ ∞

0

|u(t)|2 dt, (19)

with respect to an impulse disturbance signal.
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Proposition 1. Let the plant P (s) is given by (18). Then

E∗
c = 2λe2λτ .

Proof: We follow an indirect way to prove, i.e., by using continuity
properties. It is known that the zero-order hold operation with sam-
pling time T will convert the continuous-time delay plant P (s) onto its
delta-type counterpart P (δ) as follows

P (δ) =
P0(δ)

δ − ρ
δ−

τ
T =

P0(δ)

δτ/T (δ − ρ)
,

in which P (δ) is a strictly proper plant with relative degree v = τ/T +1.
Then from Corollary 3 and Theorem 3 of [4] we obtain its optimal
energy regulation performance in delta domain as follows

E∗
δ =

((Tρ + 1)2 − 1)(Tρ + 1)2( τ
T

+1)

T
.

The corresponding continuous-time optimal performance then can be
recovered by taking the sampling time T tend to zero, i.e., E∗

c =
limT→0 E∗

δ = 2λe2λτ . It holds since ρ = (eλT − 1)/T . ¤

Alternatively, by using the first order Padé approximation we may
approximate the delay part as follows

e−τs ≈
2/τ − s

2/τ + s
.

Hence,

P (s) ≈ Pp(s) =
P0(s)

s − λ

2/τ − s

2/τ + s
, (20)

which has one unstable pole at λ and one non-minimum phase zero at
2/τ . From Corollary 1 we get the optimal regulation performance of
plant Pp(s),

E∗
p = 2λ +

16λ2

τ(2/τ − λ)2
. (21)

We can confirm that the Padé approximation works well only for the
smaller value of λ.

6. Conclusion

In this paper, we have examined the H2 output regulation prob-
lem for SIMO LTI feedback control systems. We derive the closed-
form solutions of the optimal regulation performance for unstable/non-
minimum phase continuous-time and discrete-time systems. The direct
implication of our main results covers the energy regulation problem
and that of minimum phase time delay systems.

In general, our results confirm that the minimal output regulation
performance depends upon plant unstable poles, plant non-minimum
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phase zeros, certain outer factors, and plant gain for continuous-time
systems.
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