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Abstract. An estimator of the intensity in the form of a power
function of an inhomogeneous Poisson process is constructed and
investigated. It is assumed that only a single realization of the
Poisson process is observed in a bounded window. We prove that
the proposed estimator is consistent when the size of the window
indefinitely expands. The asymptotic bias, variance and the mean-
squared error of the proposed estimator are computed. Asymptotic
normality of the estimator is also established.
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1. Introduction

Let N be an inhomogeneous Poisson process on [0,∞) with abso-
lutely continuous σ-finite mean measure µ w.r.t. Lebesgue measure ν
and with (unknown) locally integrable intensity function λ, i.e., for any
bounded Borel set B we have

µ(B) = EN(B) =

∫

B

λ(s)ds < ∞.

Furthermore, λ is assumed to be a power function, that is, for any
s ∈ [0,∞), we can write λ(s) as

λ(s) = asb, (1.1)

where a denotes (unknown) slope and b is a constant. It is assumed
that we know b and 0 ≤ b < ∞.

Here we consider a Poisson process on [0,∞) instead of, for instance,
on R because λ has to satisfy (1.1) and must be non negative. For the
same reason we also restrict our attention to the case a > 0.
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Suppose now that, for some ω ∈ Ω, a single realization N(ω) of the
Poisson process N defined on a probability space (Ω,F ,P) with inten-
sity function λ (cf. (1.1)) is observed, though only within a bounded
interval Wn = [0, n] ⊂ [0,∞). Our goal in this paper is to construct
an estimator of λ at a given (fixed) point s ∈ [0, n] using only a single
realization N(ω) of the Poisson process N observed in interval [0, n].
We prove that the constructed estimator is consistent when the size of
the window indefinitely expands. The asymptotic bias, variance and
the mean-squared error of the proposed estimator are computed. We
also establish the asymptotic normality of our estimator.

There are many practical situations where we have to use only a
single realization for estimating intensity of a Poisson process. A review
of such applications can be seen in [4], and a number of them can also
be found in [2], [5], [7], [8] and [9].

Note that, if b = 0, then we have homogeneous Poisson process with
rate λ = a. For this case, it is well-known that the maximum likelihood
estimator of λ is given by

λ̂n =
N([0, n])

n
, (1.2)

where N([0, n]) denotes the observed number of points in [0, n]. The
present paper aims at extending this result to more general model given
in (1.1). A related case also can be found in Example 2.7 of [7]. We
refer to [6] for an excellent account of the theory of Poisson processes.

Note also that, the meaning of the asymptotic n → ∞ in this paper is
somewhat different from the classical one. Here n does not denote our
sample size, but it denotes the length of the interval of observations.
The size of our samples is a random variable denoted by N([0, n]).

2. Construction of the estimator and results

Let si, i = 1, 2, . . . , N([0, n]), denote the locations of the points in
the realization N(ω) of the Poisson process N (with intensity given by
(1.1)), observed in interval [0, n]. Then, the likelihood function is given
by

L = exp

{

− a

b + 1
nb+1

} N([0,n])
∏

i=1

asb
i , (2.1)

(cf. [1], p. 655).
The idea behind the construction of the likelihood function given in

(2.1) can be described as follows. The likelihood function should be
proportional to the following probability:

P(there is exactly one point of realization in each

{si}, i = 1, 2, . . . , N([0, n]), and no realization else where).

(2.2)
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Since Poisson process has independent increment, the probability in
(2.2) is equal to the multiplication of the two following probabilities:

P(there is no realization in [0, n] \ ∪N([0,n])
i=1 {si})

= exp
{

−µ
(

[0, n] \ ∪N([0,n])
i=1 {si}

)}

(2.3)

and

P(there is exactly one point of realization in each set

{si}, i = 1, 2, . . . , N([0, n]))

=

N([0,n])
∏

i=1

e−µ({si})µ({si}). (2.4)

Now note that, for each i = 1, 2, . . . , N([0, n]), µ({si}) is proportional
to λ(si). Then, for our purpose, we may replace the r.h.s. of (2.4) by

N([0,n])
∏

i=1

e−µ({si})λ(si). (2.5)

Multiplying the r.h.s. of (2.3) with the quantity in (2.5), yields

exp
{

−µ
(

[0, n] \ ∪N([0,n])
i=1 {si}

)}

N([0,n])
∏

i=1

e−µ({si})λ(si)

= exp
{

−µ
(

[0, n] \ ∪N([0,n])
i=1 {si}

)}

exp
{

−µ
(

∪N([0,n])
i=1 {si}

)}

N([0,n])
∏

i=1

λ(si)

= exp {−µ ([0, n])}
N([0,n])
∏

i=1

λ(si). (2.6)

Clearly

µ([0, n]) = EN([0, n]) =

∫ n

0

asb ds =
anb+1

b + 1
. (2.7)

By (2.7) and the fact λ(si) = asb
i (cf. (1.1)), we see that the r.h.s. of

(2.6) is equal to the r.h.s. of (2.1).
Before defining an estimator of λ(s), we first derived the maximum

likelihood estimator ân of a. To do this, note that

ln L = − a

b + 1
nb+1 +

N([0,n])
∑

i=1

ln(asb
i)

= − a

b + 1
nb+1 + N([0, n]) ln a +

N([0,n])
∑

i=1

ln(sb
i). (2.8)



54 I W. MANGKU, I. WIDIYASTUTI, I G. P. PURNABA

Maximizing ln L in (2.8) gives us:

∂ ln L

∂a
= − nb+1

b + 1
+

N([0, n])

a
= 0 ⇐⇒ a =

(b + 1)N([0, n])

nb+1

and

∂2 ln L

∂a2
= −N([0, n])

a2
< 0,

which directly yields the maximum likelihood estimator of a, which is
given by

ân :=
(b + 1)N([0, n])

nb+1
. (2.9)

Now we may define our estimator of the intensity function λ at a given
(fixed) point s ∈ [0, n] (cf. (1.1)) as follows

λ̂n(s) := âns
b. (2.10)

Note that, in the case b = 0 (homogeneous Poisson process), the esti-
mator in (2.10) reduces to the one given in (1.2).

Theorem 2.1. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

Eλ̂n(s) = λ(s) (2.11)

and

V ar
(

λ̂n(s)
)

=
(b + 1)as2b

nb+1
, (2.12)

which converges to 0, as n → ∞.

Hence, λ̂n(s) is unbiased estimator of λ(s). From Theorem 2.1 we
also directly obtain the following results.

Corollary 2.2. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

λ̂n(s)
p→ λ(s), (2.13)

as n → ∞. In other words, λ̂n(s) is a consistent estimator of λ(s). In
addition, we also have

MSE
(

λ̂n(s)
)

=
(b + 1)as2b

nb+1
, (2.14)

which converges to 0, as n → ∞.

In the next theorem, we establish the complete convergence of λ̂n(s).

We say λ̂n(s) converges completely to λ(s), as n → ∞, if
∑∞

n=1 P(|λ̂n(s) − λ(s)| > ǫ) < ∞, for every ǫ > 0.
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Theorem 2.3. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

λ̂n(s)
c→ λ(s), (2.15)

as n → ∞.

Theorem 2.3 and the Borel-Cantelli lemma (e.g. see [3]) implies the
following result.

Corollary 2.4. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

λ̂n(s)
a.s.→ λ(s), (2.16)

as n → ∞. In other words, λ̂n(s) is a strongly consistent estimator of
λ(s).

We conclude this section by establishing the asymptotic normality of
λ̂n(s), properly normalized, which is given in the following theorem.

Theorem 2.5. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

n(b+1)/2
(

λ̂n(s) − λ(s)
)

d→ Normal
(

0, a(b + 1)s2b
)

, (2.17)

as n → ∞.

3. Proofs

Proof of Theorem 2.1

Using (2.9), (2.10) and (2.7), we directly obtain

Eλ̂n(s) =
(b + 1)sb

nb+1
EN([0, n]) =

(b + 1)sb

nb+1

(

anb+1

b + 1

)

= asb = λ(s).

Similarly, the variance of λ̂n(s) can easily be computed as follows

V ar(λ̂n(s)) =

(

(b + 1)sb

nb+1

)2

V ar(N([0, n])) =

(

(b + 1)sb

nb+1

)2

EN([0, n])

=
(b + 1)2s2b

(nb+1)2

(

anb+1

b + 1

)

=
(b + 1)as2b

nb+1
.

This completes the proof of Theorem 2.1.
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In the proof of Theorem 2.3, we require the following lemma.

Lemma 3.1. Let X be a Poisson r.v. with EX > 0. Then, for any
ǫ > 0, we have

P

(

|X − EX|√
EX

> ǫ

)

≤ 2 exp

{

− ǫ2

2 + ǫ/
√

EX

}

.

Proof: We refer to [8], p. 222.

Proof of Theorem 2.3

To prove Theorem 2.3, we have to show that, for any ǫ > 0,
∞

∑

n=1

P
(

|λ̂n(s) − λ(s)| > ǫ
)

< ∞. (3.1)

By (2.11), the probability appearing in (3.1) can be written as

P
(

|λ̂n(s) − Eλ̂n(s)| > ǫ
)

= P

(

(b + 1)sb

nb+1
|N([0, n]) − EN([0, n])| > ǫ

)

= P

(

|N([0, n]) − EN([0, n])|
√

EN([0, n])
>

ǫ nb+1

(b + 1)sb
√

EN([0, n])

)

= P

(

|N([0, n]) − EN([0, n])|
√

EN([0, n])
>

ǫ n(b+1)/2

sb
√

a(b + 1)

)

. (3.2)

Here we have used (2.7). By Lemma 3.1, the probability on the r.h.s.
of (3.2) does not exceed

2 exp

{

− ǫ2nb+1

a(b + 1)s2b (2 + ǫn(b+1)/2s−b(a(b + 1)EN([0, n]))−1/2)

}

= 2 exp

{

− ǫ2nb+1

a(b + 1)s2b (2 + ǫ(asb)−1)

}

. (3.3)

Here we have used (2.7). Since the quantity on the r.h.s. of (3.3) is
summable, then we obtain (2.15). Note that, if we only prove (2.15)
for the case b > 0, then, instead of using Lemma 3.1, we can just
simply use Chebyshev’s inequality to obtain an upper bound for the
probability on the l.h.s. of (3.2). This because the r.h.s. of (2.12) is
summable for b > 0. This completes the proof of Theorem 2.3.
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Proof of Theorem 2.5

By (2.9), (2.10) and (2.11), the l.h.s. of (2.17) can be written as

(b + 1)sb

nb+1
(N([0, n]) − EN([0, n]))

=
(b + 1)sb

√

EN([0, n])

nb+1

(

N([0, n]) − EN([0, n])
√

EN([0, n])

)

. (3.4)

By (2.7), the r.h.s. of (3.4) reduces to

√

a(b + 1) sb

(

N([0, n]) − EN([0, n])
√

EN([0, n])

)

. (3.5)

By the normal approximation for the Poisson distribution, the quantity
in (3.5) can be written as

√

a(b + 1) sb (Normal(0, 1) + op(1)) ,

which converges in distribution to Normal(0, a(b + 1)s2b), as n → ∞.
This completes the proof of Theorem 2.5.
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