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Abstract. In this article, we classify the class of hidden Markov
models through the laws of the observation processes, since the
Markov chains are not observable. Here, we also present some
properties regarding this classification.
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1. Introduction

A hidden Markov model consists of two processes, ie: a Markov chain
and an observed process. The Markov chain in a hidden Markov model
is not observable. So, inference concerning the hidden Markov model
has to be based on the information of the observed process alone. By
this fact, two hidden Markov models wkich have the observed processes
with the same law are theoretically indistinguishable. In this case, its
is said that these two models are equivalent and their representations
are also said to be equivalent.

In this article, we study the properties of this equivalence relation
which give characteristics to the class of hidden Markov models.

In section 2, a hidden Markov is defined and an example is also
given. In section 3, we define the equivalence relation in the class of
hidden markov models and section 4 presents some properties of this
equivalence relation.

2. Hidden Markov Models

Let {Xt : t ∈ N} be a finite state Markov chain defined on a prob-
ability space (Ω,F , P ). Suppose that {Xt} is not observed directly,
but rather there is an observation process {Yt : t ∈ N} defined on
(Ω,F , P ). Then consequently, the Markov chain is said to be hidden

in the observations. A pair of stochastic processes {(Xt, Yt) : t ∈ N}
is called a hidden Markov model. Precisely, according to [3], a hidden
Markov model is formally defined as follows.

1



2 BERLIAN SETIAWATY

Definition 2.1. A pair of discrete time stochastic processes {(Xt, Yt) :
t ∈ N} defined on a probability space (Ω,F , P ) and taking values in
a set S × Y , is said to be a hidden Markov model (HMM), if it
satisfies the following conditions.

1. {Xt} is a finite state Markov chain.
2. Given {Xt}, {Yt} is a sequence of conditionally independent ran-

dom variables.
3. The conditional distribution of Yn depends on {Xt} only through

Xn.
4. The conditional distribution of Yt given Xt does not depend on t.

Assume that the Markov chain {Xt} is not observable. The cardi-
nality K of S, will be called the size of the hidden Markov model.

The following is an example of a hidden Markov model which is
adapted from [1].

Example 2.2. Let {Xt} be a Markov chain defined on a probability
space (Ω,F , P ) and taking values on S = {1, . . . , K}. The observed
process {Yt} is defined by

Yt = c(Xt) + σ(Xt)ωt, t ∈ N , (2.1)

where c and σ are real valued functions and positive real valued func-
tion on S respectively, and {ωt} is a sequence of N(0, 1) independent,
identically distributed (i.i.d.) random variables.

Since {ωt} is a sequence of N(0, 1) i.i.d. random variables, then given
{Xt}, {Yt} is a sequence of independent random variables. From (2.1),
it is clear that Yt is a function of Xt only, then the third condition of
Definition 2.1 holds. Let y ∈ Y and i ∈ S. Let ci = c(i) and σi = σ(i),
then

P (Yt ≤ y|Xt = i) = P (ci + σiωt ≤ y)

= P (σiωt ≤ y − ci)

=

∫ y−ci

−∞

φi(z) dz, (2.2)

where

φi(z) =
1

σi

√
2π

e
− 1

2

“
z

σi

”
2

. (2.3)

Thus from (2.2) and (2.3), the conditional density of Yt given Xt = i is
φi(· − ci) which does not depend on t. Therefore it can be concluded
that {(Xt, Yt)} is a hidden Markov model.

3. Representations of a Hidden Markov Model

Let {(Xt, Yt)} be a hidden Markov model defined on the probability
space (Ω,F , P ), taking values on S × Y , where S = {1, . . . , K} and
Y = R. Let A = (αij) be the transition probability matrix and π =
(πi) be the initial probability distribution of the Markov chain {Xt}.
Assume for i = i, . . . , K, the conditional densities of Yt given Xt = i

with respect to the measure µ, p(·|i), belong to the same family F ,
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where F = {f(·|θ) : θ ∈ Θ} is a family of densities on a Euclidean
space with respect to the measure µ, indexed by θ ∈ Θ. This means
that for each i = 1, . . . , K,

p(·|i) = f(·, θi),

for some θi ∈ Θ.
From the result of [4], it can be seen that the law of the hidden

Markov model {(Xt, Yt)} is completely specified by :
(a). The size K.
(b). The transition probability matrix A = (αij), satisfying

αij ≥ 0,
K∑

j=1

αij = 1, i, j = 1, . . . , K.

(c). The initial probability distribution π = (πi) satisfying

πi ≥ 0, i = 1, . . . , K,

K∑

i=1

πi = 1.

(d). The vector θ = (θi)
T , θi ∈ Θ, i = 1, . . . , K, which desribes the con-

ditional
densities of Yt given Xt = i, i = 1, . . . , K.

Definition 3.1. Let φ = (K,A, π, θ). The parameter φ is called a
representation of the hidden Markov model {(Xt, Yt)}.

Thus, the hidden Markov model {(Xt, Yt)} can be represented by a
representation φ = (K,A, π, θ).

On the otherhand, we can also generate a hidden Markov model
{(Xt, Yt)} from a representation φ = (K,A, π, θ), by choosing a Markov
chain {Xt} which takes values on {1, . . . , K} and its law is determined
by the K ×K-transition probability matrix A and the initial probabil-
ity π, and an observation process {Yt} taking values on Y , where the
density functions of Yt given Xt = i, i = 1, . . . , K are determined by
θ.

4. Equivalent Representations

Let φ = (K,A, π, θ) and φ̂ = (K̂, Â, π̂, θ̂) be two representations
which respectively generate hidden Markov models {(Xt, Yt)} and

{(X̂t, Yt)}. The {(Xt, Yt)} takes values on {1, . . . , K}×Y and {(X̂t, Yt)}
takes values on {1, . . . , K̂} × Y . For any n ∈ N , let pφ(·, · · · , ·) and
pbφ(·, · · · , ·) be the n-dimensional joint density function of Y1, . . . Yn with

respect to φ and φ̂. Suppose that for every n ∈ N ,

pφ(Y1, . . . , Yn) = pbφ(Y1, . . . , Yn).

Then {Yt} has the same law under φ and φ̂. Since in hidden Markov

models {(Xt, Yt)} and {(X̂t, Yt)}, the Markov chains {Xt} and {X̂t}
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are not observable and we only observed the values of {Yt}, then the-

oretically, the hidden Markov models {(Xt, Yt)} and {(X̂t, Yt)} are in-

distinguishable. In this case, it is said that {(Xt, Yt)} and {(X̂t, Yt)} are

equivalent. The representations φ and φ̂ are also said to be equivalent,

and will be denoted as φ ∼ φ̂.
For each K ∈ N , define

ΦK =
{

φ : φ = (K,A, π, θ), where A, π and θ satisfy :

A = (αij), αij ≥ 0,
K∑

j=1

αij = 1, i, j = 1, . . . , K

π = (πi), πi ≥ 0, i = 1, . . . , K,

K∑

i=1

πi = 1

θ = (θi)
T , θi ∈ Θ, i = 1, . . . , K

}
(4.1)

and

Φ =
⋃

K∈N

φK . (4.2)

The relation ∼ is now defined on Φ as follows.

Definition 4.1. Let φ, φ̂ ∈ Φ. Representations φ and φ̂ are said to be
equivalent, denoted as

φ ∼ φ̂

if and only if for every n ∈ N ,

pφ(Y1, Y2, . . . , Yn) = pbφ(Y1, Y2, . . . , Yn).

Remarks 4.2. It is clear that relation ∼ forms an equivalence relation
on Φ.

Let φ = (K,A, π, θ) ∈ ΦK , then under φ, Y1, . . . , Yn, for any n, has
joint density

pφ(y1, . . . , yn) =
K∑

x1=1

· · ·
K∑

xn=1

πx1
f(y1, θx1

) ·
n∏

t=2

αxt−1,xt
f(yt, θxt

). (4.3)

Let σ be any permutation of {1, 2, . . . , K}. Define

σ(A) = (ασ(i),σ(j))

σ(π) = (πσ(i))

σ(θ) = (θσ(i))
T .

Let

σ(φ) = (K,σ(A), σ(π), σ(θ)),
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then σ(φ) ∈ ΦK and easy to see from (4.3) that

pφ(y1, . . . , yn) = pσ(φ)(y1, . . . , yn).

implying φ ∼ σ(φ). So we have the following lemma.

Lemma 4.3. Let φ ∈ ΦK, then for every permutation σ of {1, 2, . . . , K},
σ(φ) ∼ φ.

Lemma 4.4. Let φ = (K,A, π, θ) ∈ ΦK. If θi = γ, i = 1, . . . , K, for
some γ ∈ Θ, then

φ ∼ φ(γ),

where φ(γ) = (1, (1), (1), (γ)) ∈ Φ1.

Proof :

For any n ∈ N ,

pφ(y1, . . . , yn) =
K∑

x1=1

· · ·
K∑

xn=1

πx1
f(y1, γ)

n∏

t=1

αxt−1,xt
f(yt, γ)

=
n∏

t=1

f(yt, γ)

= pφ(γ)(y1, . . . , yn),

where φ(γ) = (1, (1), (1), (γ)) ∈ Φ1. Hence φ ∼ φ(γ).

Lemma 4.5. Let φ = (K,A, π, θ) ∈ ΦK, where π is a stationary prob-
ability distribution of A. Let N be the number of non-zero πi. Then

there is φ̂ = (N, Â, π̂, θ̂) ∈ ΦN , such that :

1. π̂i > 0, for i = 1, . . . , N .

2. π̂ is a stationary probability distribution of Â.

3. φ ∼ φ̂.

Proof :

Let φ = (K,A, π, θ) ∈ ΦK , where π is a stationary probability distri-
bution of A. Let N be the number of non-zero πi. Without lost of
generality, suppose that

πi = 0, for i = N + 1, . . . , K.

Since

πA = π,

then

αij = 0, for i = 1, . . . , N ; j = N + 1, . . . , K.

Set

α̂ij = αij, i, j = 1, . . . , N

π̂i = πi, i = 1, . . . , N

θ̂i = θi, i = 1, . . . , N.
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Let

Â = (α̂ij), π̂ = (πi), θ̂ = (θi)
T

and K̂-row vector

ê = (1, 1, . . . , 1).

Then it is clear that

π̂i > 0, i = 1, . . . , N

and

π̂ Â = π̂.

Let

B̂(y) =




f(y, θ1) 0 · · · 0
0 f(y, θ2) · · · 0
...

...
. . .

...
0 0 · · · f(y, θN)


 , y ∈ Y

and

M̂(y) = ÂB̂(y).

Take φ̂ = (N, Â, π̂, θ̂), then φ̂ ∈ ΦN and

pφ(y1, . . . , yn) = πM(y1)M(y2) · · ·M(yn)e

= π̂M̂(y1)M̂(y2) · · · M̂(yn)ê

= pbφ(y1, . . . , yn),

implying φ ∼ φ̂.
Next lemma gives sufficient conditions for representations to be equiv-

alent. The idea of this lemma comes from [2]

Lemma 4.6. Let φ = (K,A, π, θ) ∈ ΦK and φ̂ = (K̂, Â, π̂, θ̂) ∈ Φ bK.

If there are K × K̂-matrix X and K̂ × K-matrix Y , such that

Â = Y AX (4.4)

XB̂(y) = B(y)X, ∀y ∈ Y (4.5)

π̂ = πX

ê = Y e

XY = IK ,

then φ ∼ φ̂.
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Proof :

From (4.4) and (4.5), for every y ∈ Y ,

M̂(y) = ÂB̂(y)

= Y AXB̂(y)

= Y AB(y)X

= Y M(y)X.

For any n ∈ N ,

pbφ(y1, . . . , yn) = π̂B̂(y1)M̂(y2) · · · M̂(yn)ê

= πXB̂(y1)Y M(y2)X · · ·Y M(yn)XY e

= πB(y1)XY M(y2)X · · ·Y M(yn)XY e

= πB(y1)IKM(y2) · · · IKM(yn)IKe

= πB(y1)M(y2) · · ·M(yn)e

= pφ(y1, . . . , yn).

Hence φ ∼ φ̂.

Lemma 4.7. Let φ = (K,A, π, θ) ∈ ΦK and φ̂ = (K̂, Â, π̂, θ̂) ∈ Φ bK,

where π and π̂ are stationary probability distributions of A and Â re-

spectively. If there are K × K̂-matrix X and K̂ × K-matrix Y , such
that

M̂(y) = Y M(y)X, ∀y ∈ Y (4.6)

π̂ = πX

ê = Y e

XY = IK ,

then φ ∼ φ̂.

Remarks 4.8. Equation (4.6) implies Â = Y AX.

Proof :

For any n ∈ N ,

pbφ(y1, . . . , yn) = π̂M̂(y1)M̂(y2) · · · M̂(yn)ê

= πXY M(y1)XY M(y2)X · · ·Y M(yn)XY e

= πIKM(y1)IKM(y2)IK · · · IKM(yn)IKe

= πM(y1)M(y2) · · ·M(yn)e

= pφ(y1, . . . , yn).

Thus φ ∼ φ̂.
Based on Lemma 4.6 and Lemma 4.7, we derive the following lem-

mas.

Lemma 4.9. For any K ∈ N and φ ∈ ΦK, there is φ̂ ∈ ΦK+1, such

that φ ∼ φ̂.
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Proof :

Let φ = (K,A, π, θ) ∈ ΦK . Define a K × (K + 1)-matrix X and a
(K + 1) × K-matrix Y respectively as follow

X =

(
IK−1 OK−1,2

O1,K−1 a b

)
, Y =




IK−1 OK−1,1

O2,K−1
1
1



 (4.7)

where a and b are any real numbers, such that a, b ≥ 0 and a + b = 1.
Notice that

XY = IK

and

ê = Y e.

Let Â = (α̂ij) be a (K + 1) × (K + 1)-matrix defined by

Â = Y AX

=




α1,1 · · · α1,K−1 a · α1,K b · α1,K

...
. . .

...
...

...
αK−1,1 · · · αK−1,K−1 a · αK−1,K b · αK−1,K

αK,1 · · · αK,K−1 a · αK,K b · αK,K

αK,1 · · · αK,K−1 a · αK,K b · αK,K




(4.8)

It is clear that

α̂ij ≥ 0, i, j = 1, . . . , K + 1

K+1∑

j=1

α̂ij = 1, i = 1, . . . , K + 1.

Let π̂ = (π̂i) be a (K + 1)-row vector which is defined by

π̂ = πX

= (π1, . . . , πK−1, a · πK , b · πK), (4.9)

then it is obvious that

π̂i ≥ 0, i = 1, . . . , K + 1

K∑

i=1

π̂i = 1.

Let θ̂ = (θ̂i) be a K + 1-column vector which is defined by

θ̂ = Y θ

= (θ1, . . . , θK−1, θK , θK)T (4.10)
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and for y ∈ Y , B̂(y) be a (K +1)× (K +1)-diagonal matrix defined by

B̂(y) =




f(y, θ1) 0 · · · 0 0
0 f(y, θ2) · · · 0 0
...

...
. . .

...
...

0 0 · · · f(y, θK) 0
0 0 · · · 0 f(y, θK)




. (4.11)

Notice that

XB̂(y) = B(y)X, ∀y ∈ Y .

Let φ̂ = (K + 1, Â, π̂, θ̂), then φ̂ ∈ ΦK+1 and by Lemma 4.6, φ ∼ φ̂.
From the proof of Lemma 4.9, for φ ∈ ΦK , there are infinitely many

φ̂ ∈ ΦK+1 depending on how a and b were chosen, such that φ ∼ φ̂. So
we have the following corollary.

Corollary 1. For φ ∈ ΦK , there are infinitely many φ̂ ∈ ΦK=1 such

that φ ∈ φ̂.

Lemma 4.10. For any K ∈ N and φ = (K,A, π, θ) ∈ ΦK, where π
is a stationary probability distribution of A, then there is φ = (K +

1, Â, π̂, θ̂) ∈ ΦK+1 such that :

1. π̂ is a stationary distribution of Â.

2. φ̂ ∼ φ.

Proof :

Let φ = (K,A, π, θ) ∈ Φk, where π is a stationary probability distribu-

tion of A. Let φ̂ = (K + 1, Â, π̂, θ̂) ∈ ΦK+1 as in the proof of Lemma

4.9, hence φ ∼ φ̂. Since π is a stationary probability distribution of A,
then

πA = A,

implying

π̂Â = πXY AX

= πIKAX

= πAX

= πX

= π̂.

So π̂ is a stationary probability distribution of Â.

Remarks 4.11. In Lemma 4.10, if πi > 0, for i = 1, . . . , K, then by
choosing a, b > 0 in matrix X, we have π̂i > 0, for i = 1, . . . , K + 1.
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Let φ = (K,A, π, θ) ∈ ΦK , then by Lemma 3.4 of [4], the conditional
density function of Y1, . . . , Yn, given X1 = i, i = 1, . . . , K, under φ is,

pφ(Y1, . . . , Yn|X1 = i) = eT
i B(Y1)M(Y2) · · ·M(Yn)e.

Define,

qφ(Y1, . . . , Yn) = max
1≤K

pφ(Y1, . . . , Yn|X1 = i).

Lemma 4.12. For any K ∈ N and φ ∈ ΦK, there is φ̂ ∈ ΦK+1, such
that :

1. φ ∼ φ̂.
2. qφ(Y1, . . . , Yn) = qbφ(Y1, . . . , Yn), for every n ∈ N .

Proof :

Let φ = (K,A, π, θ) ∈ ΦK . Let φ̂ = (K + 1, Â, π̂, θ̂) ∈ ΦK+1 as in the

proof of Lemma 4.9, then φ̂ ∼ φ. Notice that from definition of X in
(4.7),

êT
i = eT

i X, for i= 1, . . . , K-1. (4.12)

Therefore by (4.12) and Lemma 3.4 of [4], for i = 1, . . . , K − 1,

pbφ(Y1, . . . , Yn|X1 = i) = êT
i B̂(Y1)M̂(Y2) · · · M̂(Yn)ê

= eT
i XB̂(Y1)Y M(Y2)X · · ·Y M(Yn)XY e

= eT
i B(Y1)XY M(Y2)X · · ·Y M(Yn)XY e

= eT
i B(Y1)IKM(Y2)IK · · · IKM(Yn)IKe

= eT
i B(Y1)M(Y2) · · ·M(Yn)e

= pφ(Y1, . . . , Yn|X1 = i) (4.13)

Since by (4.8), the K-th and K + 1-th rows of Â are the same and

θ̂K = θ̂K+1, then by Lemma 3.4 of [4],

pbφ(Y1, . . . , Yn|X1 = K)

= f(Y1, θ̂K)
K+1∑

x2=1

· · ·
K+1∑

xn=1

α̂K,x2
f(Y2, θ̂x2

)
n∏

t=3

α̂xt−1,xt
f(Yt, θ̂xt

)

= f(Y1, θ̂K+1)
K+1∑

x2=1

· · ·
K+1∑

xn=1

α̂K+1,x2
f(Y2, θ̂x2

)
n∏

t=3

α̂xt−1,xt
f(Yt, θ̂xt

)

= pbφ(Y1, . . . , Yn|X1 = K + 1). (4.14)

Also notice that for a, b ≥ 0 and a + b = 1,

aêT
K + bêT

K=1 = eT
KX, (4.15)

then by (4.15) and Lemma 3.4 of [4],
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apbφ(Y1, . . . , Yn|X1 = K) + bpbφ(Y1, . . . , Yn|X1 = K + 1)

= aêT
KB̂(Y1)M̂(Y2) · · · M̂(Yn)ê + bêT

KB̂(Y1)M̂(Y2) · · · M̂(Yn)ê

=
(
aêT

K + bêT
K

)
B̂(Y1)M̂(Y2) · · · M̂(Yn)ê

= eT
KXB̂(Y1)Y M(Y2)X · · ·Y M(Yn)XY e

= eT
KB(Y1)XY M(Y2)X · · ·Y M(Yn)XY e

= eT
KB(Y1)IKM(Y2)IK · · · IKM(Yn)IKe

= eT
KB(Y1)M(Y2) · · ·M(Yn)e

= pφ(Y1, . . . , Yn|X1 = K). (4.16)

Since a, b ≥ 0 and a + b = 1, then from (4.14) and (4.16),

pbφ(Y1, . . . , Yn|X̂ = i) = pφ(Y1, . . . , Yn|X1 = K), for i = K,K + 1.

(4.17)

From (4.13) and (4.17),

qφ(Y1, . . . , Yn) = max
1≤i≤K

pφ(Y1, . . . , Yn|X1 = i)

= max
1≤i≤K+1

pbφ(Y1, . . . , Yn|X1 = i)

= qbφ(Y1, . . . , Yn)

By Lemma 4.9, we can define an order ≺ in {ΦK}.

Definition 4.13. Define an order ≺ on {ΦK} by

ΦK ≺ ΦL, K, L ∈ N ,

if and only if for every φ ∈ ΦK , there is φ̂ ∈ ΦL such that φ ∼ φ̂.

As a consequence of Lemma 4.9, Lemma 4.14 follows.

Lemma 4.14. For every K ∈ N ,

ΦK ≺ ΦK+1.

From Lemma 4.14, the families of hidden Markov models represented
by {ΦK} are nested families as shown in Figure 1.
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Figure 1.
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