Nonexistence Proofs for Five Ternary Linear Codes

Sugi Guritman*
Department of Mathematics, Bogor Agricultural University
JI. Raya Pajajaran Bogor, 16144 Indonesia

Abstract

An [n,k,dlz-code is a ternary linear code with length n, dimension k
and minimum distance d. We prove that codes with parameters [110,6,72]3,
[109,6,71]3, [237,6,157]3, [69,7,43]3, and [120,9,75]3 do not exist.

1 Introduction

Let F7 denote the vector space of ordered n-tuples over the finite field Fq. A linear
code of length n over Fy is a subspace C C Fg. If C has dimension k and minimum
distance d, it is called an [n,k,d]q-code. A central problem in algebraic coding
theory is to optimize one of the parameters n, k, and d for given values of the other
two. Although it is unlikely that this optimization problem will ever be solved in
its full generality, many specific results have been obtained so far. The state of the
art is listed in Brouwer’s tables [1]. It is immediately clear from these tables that
the amount of available information quickly diminishes with growing field size q.

The current paper presents nonexistence proofs of ternary linear codes (q = 3)
with certain parameters. Of course, any set of parameters for which no code exists
gives bounds for optimal codes. The main tools for nonexistence proofs use the linear
programming method. We classify the tools into standard tools and an additional
tool. The standard tools are the standard residual code argument, the MacWilliams
equations and the existence of minimal” generator matrices which will be described
in Section 2. The additional tool is based on the weight distribution of Reed-Muller
codes which will be described in Section 3. Finally Section 3 presents the main
results. Below is a short description of the linear programming method.

Let us describe briefly this fundamental idea of Delsarte [3]. The dual C* of an
[n, k, dlq-code C is its orthogonal with respect to the standard inner product in Fyg.
Let A;(C) and B;(C) be the number of words of weight i in C and in C*, respectively.
Obviously, Ao(C) = Bo(C) = 1. The remaining numbers satisfy the following set of
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linear constraints:

Ai 2 0 (1<i<m),
A; = 0 (1 £i<d=1),
aBi = YL Ki(A+(F) (1<i<n).

The last equations are the celebrated MacWilliams identities, cf [9]. Now the basic
idea is that the code C cannot exist if the linear program (1) is infeasible. Of course,
adding new constraints makes for sharper bounds. The standard tools is the classical
ways to strengthen (1).

1.1 Standard tools
These standard references are (2], [7] and [4].

Definition 1 Let C be an [n,k, d]3-code with generator matriz G, and let c € C be
a word of weight w. Then the residual code Res(C;c) of C with respect to c, is the
code generated by the restriction of G to the columns where c has a zero entry. We
will denote it by Res(C;w) if only the weight w of ¢ matters.

Proposition 2 Let C be an [n, Xk, d]s-code such that d > %‘i.‘ Then Res(C;w) has
the parameters m —w,k—1,d — [%J]g,

Proposition 3 (The MacWilliams Equations) Let C be an [n,k,d]3-code and let
Ct be the dual of C. Let A;(C) and B;(C) be the number of words of weight i in C
and in C*, respectively. Then

Ki(G)A;(C) =3*Bi(C),0<i< n,
j=0
where the coefficients K (j) are defined by
3 : s n—j j i-s ‘
i) - 0<i<n.
Ki(3) g_o( 1) (i_s)(s)z sl

Proposition 4 The existence of an [n, k, d]3 -code with dual distance d*implies the
ezistence of an [n — d+,k — d* + 1, d]3-code.

Propositio_n 5 Suppose x and y are two ternary vectors of length n. Then
wt(x)+ wt(y) + wt(x +y) + wh(x+2y) =3(n—z), 2)
where z is the number of coordinates places in which both x and 'y are zero.
Proposition 6 IfC is an [n,k, d]3-code, then
1. Ai(C)=0o0r2 fori> (3n—2d)/2,
2. if Ai(C) > 0, then A;(C) =0 forj>3n—2d—1iandi#j.
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1.2 Additional tools

The following proposition is the ternary version of a result by Hill and Lizak.

Proposition 7 (8] Let C be an [n,k, d]3 -code with ged(d, 3) = 1. If all weights in C
are congruent to 0 or d modulo 3, then C can be extended to an [n+1,k,d+1]3-code
whose weights are congruent to 0 or d + 1 modulo 3.

The proof is actually based on the following lemma.

Lemma 8 Let C be an [n,k,d]s-code, and let s € {1,2} be such that all weights in
C are congruent to 0 or s modulo 3. Then D = {c € C | wt(c) = 0(3)} is a linear
subcode of C of dimension >k —1.

Gaps in the weight distribution of ternary Reed-Muller codes imply restrictions
on the weight distribution of ternary linear codes (cf. [5]). Here are two results of
this type:

Proposition 9 IfC is a ternary linear code of dimension k, then

) AC) ef3, 3T H2.3 1T (0<j< ¥
=0(3)

D AdC) e T 0L i<H) u=12

i=u{3)

Proposition 10 Let C be ternary linear code of dimension k. If Zizu(s) Ai(C) =
3k=T1 for some v € {1,2}, then {c € C | wt(c) Z u(3)} is a linear subcode of C of
dimension k — 1.

2 Some nonexistence proofs

In this section we prove the nonexistence of a few teraary linear codes. The compu-

terized calculations were done by MAPLE. We use the notation A(%) := > AiC)
iZu(3)

for u e {0,1,2}.
Theorem 11 Theve i no [110,6,72]s-code.

Proof. Suppose C is a code of parameters [110,6,72]3. From the residual code
technique and known nonexistence results in dimension 5 (cf. the table in [1]) we
find that the weight set of C is contained in

{0,72,81,90,99,108,109,110}.

Proposition 4 and the table in [1] imply that the dual distance is at least 2. Apply
the linear programming with respect to the MacWilliams equations, the above con-
straints and those from Proposition 6. We respectively find that C has no words of
weight 110, 109, 108 and 99. Moreover, we find that 0 < Ag;(C) < 60.
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Let x € ¢ with wt(x) = 90, and let y be a word in C which is linearly independent
of x. If z is the number of coordinates places in which both x and y are zero, then
Equation 2 becomes

wt(y) + wt(x + y) + wt(x+2y) = 3(110 — z) — 90. 3)

The residual code D := Res(C;x) has parameters [20,5,12]3, and y corresponds to
a word in D of weight 20 — z. Suppose that this word has weight 15, i.e. that z = 5.
Then Equation 3 becomes

wt(y) + wt(y +x) + wt(y—i;Zx) = 225.

Since the nonzero weight set of C is {72,81, 90}, exactly one of y, y + x and y+2x
have weight 81 and the other two have weight 72. That means that Ag;(C) >
A15(D). Hamada, Helleseth and Ytrehus, however, have shown in [10] that the
[20,5, 12]3-codes must have the weight distribution A;,(D) = 150, Ay15(D) = 72,
and Ao (D) = 20. x

Thecrem 12 There is no [109,6,71]3-code.

Proof. Suppose C is a code of parameters [109,6,71]3. We reduce the number
of possible weights by means of the residual code technique and note that the dual
distance is at least 2. The optimizing the weight sum A% with respect to the
MacWilliams equations gives 73 < A'®) < 728. From Proposition 9 we infer that
actually 324 < A'®) < 648. Add these new constraints constraint to optimize A‘').
The result is 727 < A" < 729, and then Proposition 9 implies that Al') =729 = 3¢,
So all weights in C are congruent to 0 or 2 modulo 3, and Proposition 7 applies.
This leads to a contradiction, because we have shown in the preceding theorem that

no [110, 6,72]3-code exists. n
Theorem 13 There is no [237,6,157]3-code.

Proof. Suppose C is a code of parameters [237,6,157]3. Its dual distance is at
least 3. Using the standard techniques, we reduce the weight set to

(0,157,158, 159, 168, 182, 183}.

Optimizing A(®) with respect to the MacWilliams equations then gives 530 < A(®) <
728, and Proposition 9 improves this to A(®) = 540 or 648. Use these new constraints
to optimize A(1), The result is 85 < A(') < 307, and Proposition 9-implies that
A" = 243 = 35-1, According to Proposition 10, the words of weight congruent
to 0 or 2 modulo 3 in C constitute a 1-codimensional subcode D. Let x € C with
wt(x) = 2 mod 3 and y € C with wt(y) = 1 mod 3. Since x € D and y ¢ D, both
x+y and x + 2y are in the complement of D. Hence wt(x+y) = 1 mod 3 and
wt(x + 2y) = 1 mod 3. Then Equation 2 becomes 2 = 0(mod 3), a contradiction. m

Theorem 14 There is no [69,7,43]3-code.
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Prcof. Suppose C is a .code of parameters [69,7,43]3. Its dual distance is at
least 4 and its weight set is contained in

{0,43,44,45,47,48,51,54,56,57,58,59,60,62, 63,65, 66,67, 68, 69}.

Optimization of A(°®) with respect to the MacWilliams equations yields 1149 <
A(®) <1556, and by Proposition 9 this can be strengthened to 1296 < A(®) < 1512.
Add these new constraints, and optimize A{'), The result is 882 < A(') < 1233, and
now Proposition 9 implies that A(1) = 1215. With this new information we optimize
A2) We find that 1708 < A(?) < 1742, which contradicts Proposition 9. -

Theorem 15 There is no [120,9,75]3 -code.

Proof. Suppose C is a code of parameters [120,9,75]3. We proceed as in the
theorems above, and optimize A(®) with respect to the MacWilliams equations,
taking into account that some weights do not occur and that the dual distance is
at least 3. We find that 933 < A!%) < 10140. and from Proposition 9 we infer that
Af®) = 8748. Add this constraint to the program, and optimize A'). The result
is 17832 < A1) < 19638, and Proposition 9 now implies that A!) = 19683 = 37,
So C contains no words of weight 1 modulo 3. Then, optimizing A(?), we find that
A2} = 10935, i.e. the number of words of weight 0 modulo 3 in C is 10935 # 37~'.
This contradicts Lemma 8. =

Let D3{(n, k) be the largest integer d for which an [n,k,d]; code exists. The
state of the art for bounds on D3(n, k) can be found in Brouwer’s on-line table [1].
On April 7, 2000, we checked that the results above improve this table as follows:

D3(110,6) = 71, D3(109,6) =70, D3(237,6) = 156,
41 < D;(69,7) <42 and 72 < D3(120,9) < 74.

We have investigated other cases in Brouwer’s table using the tools and methods
in this paper. There are more than 200 improvements for the upper bound of
D3(n, k), k < 17. These have been reported in [6].
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