WATURANGI, DIANA ELIZABETH, Atma Jaya Catholic University of Indonesia, Indonesia

  • HAYATI Journal of Biosciences Vol. 18 No. 2 (2011): June 2011 - Articles
    Methylotrophs inhabit the human mouth. In this study, methylotrophic bacteria were isolated from the human mouth microflora of 63 subjects, especially from the tongue, gingival, and subgingival area using minimal agar supplemented with 1% methanol. The obtained isolates were subjected to biochemical assays, continued with antibiotics susceptibility testing using ampicillin (10 mg), tetracycline (20 mg), kanamycin (30 mg), trimethoprim (5 mg), and streptomycin (10 mg). Genetic diversity was analyzed using ARDRA method. Isolates varying in morphology characteristics were amplified for 16S rRNA gene and continued with DNA sequencing. As many as 21 methylotrophic bacterial isolates were purified and divided into seven groups with different phenotypic profiles. A majority of the isolates were resistant to trimethoprim but sensitive to kanamycin, streptomycin, and tetracycline. Resistance to ampicillin was variable in each isolate. ARDRA showed nine different digestion profiles. DNA sequencing analysis of the 16S rRNA gene showed that six isolates with different phenotypic and digestion profiles were closely related to Methylobacterium radiotoleran (94%), Microbacterium esteraromaticum (99%), Pseudomonas sp. (100%), and three of them were exhibited 99, 99, and 98% sequence similarity with Gordonia sp., respectively. The results of this study revealed diversity among methylotrophic bacteria particularly in human mouth.
    Abstract  PDF
  • HAYATI Journal of Biosciences Vol. 18 No. 1 (2011): March 2011 - Articles
    The human feet and mouth are known as sources of methylated sulfides, which are produced by other microflora. Methylated sulfides could be oxidized by methylotrophic bacteria, which may result in odor reduction in human feet and mouth. In this study, we collected a total of 21 isolates from human feet, and 37 isolates from human mouth. These isolates were identified with biochemical test such as oxidase and catalase test and Gram staining assay. The presence of mxaF gene of methanol dehydrogenase was detected by PCR using specific primers. However, the result showed that most of the isolates did not possess mxaF gene. Hence, the methanol dehydrogenase (MDH) activity was also determined. From the total 21 isolates obtained from the feet, only 15 of them showed MDH activity whereas 23 isolates from the total 37 isolates obtained from teeth and tongue region also showed MDH activity. Isolate K25-3 (74.444 U/ml), K33-6 (79.815 U/ml), and K43-5 (69.259 U/ml) from human feet and M41L3 (135.926 U/ml), M27G2 (85.556 U/ml), and M51G1 (103.333 U/ml) from human mouth showed the highest total enzyme activity. Isolates with the highest total activity could be used for further studies such as purification of the enzyme and isolates characterization.
    Abstract  PDF