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The aim of this research was to obtain the different characteristics of haemoglobin molecules in subjects
under hypoxic condition, namely eel, catfish, suckermouth fish, green sea turtle using an electrophoresis
technique. We used human umbilical cord blood and thalassemia patient blood, as well as a normal adult-human
blood as controls. The proteins obtained after electrophoresis process were stained with two different colouring
techniques, each based on different principles. Both staining techniques gave practically identical results. Subject
that live in hypoxic condition has a different haemoglobin in comparison to the one found in adult human live in
normal oxygen condition (normoxia). These hypoxia-adapted or -needed hemoglobin migrate slower than adult
human hemoglobin from normoxia. This observation suggests that hemoglobin which is needed to live in hypoxic
condition or environment is a different molecule. Whether this hemoglobin from hypoxic condition has a higher
affinity to oxygen is not yet known. Further study is needed to clarify this issue.
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INTRODUCTION

Each species has a specific habitat. The habitat
determines their physiological and genetic
characteristics. Some animals have a low oxygen
environment as their habitats (Wheaton & Navdeep
2011). Others have to live in a relatively low oxygen
environment in a certain stadium of their development
or in a certain pathological condition, for instance in
the embryonic state or in a congenital anemic
condition (Akinsheye et al. 2011). All of these
conditions compel the related organism to adapt to
the specific habitat in order to survive (Roshan et al.
2011).

As oxygen is very essential for animals or even
for simpler multi-cellular organisms, low oxygen
environment necessitates them to dispose a more
efficient or more powerful molecule for extracting
the oxygen in such a low amounts (Schuyler et al.
2012). It is well known that such a molecule is
hemoglobin (Leichtle et al. 2011). Hence, it is
reasonable to think that this oxygen-binding molecule
might have a different characteristic in such animals
or condition.

This suggestion is based on the hemoglobin
characteristics found in red blood cells that serve to
bind oxygen in the blood of vertebrates (Kanias &
Jason 2010; Richards 2011). Hemoglobin has to be
able to bind O

2
 in a relatively low concentration

(Cabrales et al. 2011). This is possible only if the
hemoglobin has a higher affinity to O

2
 than

hemoglobin in normal condition (Rao et al. 2010).
As the hem group remains the same, any difference
should be explored in globin protein itself (Noosud et
al. 2010). If this is the case, the difference in the
globin protein could be reflected in the physicochemical
properties of the hemoglobin. Usually, a difference
between 2 proteins, even only in 1 amino acid residue,
could be revealed by electrophoretic analysis (Signore
et al. 2012). The objective of this experiment was to
analyze the difference of electrophoretic pattern of
hemoglobins from several subjects living in a relatively
hypoxic condition and also from fetus and thalassemic
patient (Wajcman & Kamran 2011).

Subjects that are adapted to live in low-oxygen
environments were represented by an eel
(Monopterus albus), a catfish (Clarias batrachus),
a suckermouth fish (Hyposarcus pardalis), a green
turtle (Chelonia mydas) and a new-born baby’s
umbilical cord. The blood sample of thalassemic
patient was used as an oxygen-binding disability
example.



MATERIALS AND METHODS

Chelonia mydas is an endangered animal and
was obtained from Pangumbahan Beach Sukabumi,
West Java Island. This animal has CITES certificate
from Ministry of Forestry Republic of Indonesia:  SK/
136/IV-SET/2008. Our courtesy to Prof. dr.
Mohamad Sadikin, D.Sc., for the permission to use
collection of human blood samples stored as a control
in the laboratory of Biochemistry and Molecular
Biology, Faculty of Medicine, University of Indonesia.
Eels, catfish and suckermouth fish samples, all were
kind gift from Karunia Nutzir Mantolini from State
University of Jakarta.

Preparation of Hemolysate. Blood was washed
and suspended in 0.9% NaCl in order to eliminate all
plasma protein. One volume of blood was well mixed
with 1 volume of 0.9% NaCl and the suspension was
centrifuged 300 rpm for ten minutes. The supernatant
was discarded. The process was repeated three times
until the supernatant was free from plasma protein
and the hemoglobin leaked from the destructed
erythrocyte. The washed blood cells are called pack
cells.

Hemoglobin Isolation. Pack cells were mixed
with distilled water and CCl

4 
in 1:2:1 proportion (pack

cells:distilled water:CCl
4
). The mixture was well

mixed and centrifugated at 300 rpm for ten minutes.
Hemoglobin Analysis by Cellulose Acetate

Membrane Electrophoresis. Supre-Heme®
Helena Buffer (Cat. No. 5802) which comprised of
Tris-EDTA and borate acid was diluted in 980 ml of
distilled water. Titan® disc III acetate cellulose (Cat.
No. 3021) was soaked in the Supre-Heme® Helena
buffer for 10 minutes. Ten ml of that buffer was
poured into each electrode compartment of the
electrophoresis apparatus. Later on, electrophoresis
plate (Titan® disc III acetate cellulose (Cat. No.
3021) was placed into the electrode compartment of
the electrophoresis apparatus, then it was blotted by
placing the plate between two pieces of filter papers.
Five microliters of hemolysate were picked up with
an applicator and then placed on the electrophoretic
plate. After five seconds, the plate containing the
lysate was immediately place in the electrophoresis
apparatus with the acetate cellulose side faced to
the bottom. Electrophoresis was run at 350 Volts and
set for 25 minutes. The apparatus stopped
automatically after this period. The electrophoresis
process was followed with Ponceau S (Cat. No.
5526), and benzidine [Hartman Leddone Company,
Philadelphia] staining for each disc with Titan® III
Cellulose Acetate membrane. The results were then
compared and analyzed.

Ponceau Staining. After the electrophoretic
separation, Titan® disc III acetate cellulose (Cat. No.
3021) was dipped in the Ponceau S for five minutes.
The plate was stained red. To eliminate all non specific
red color, the plate was washed three times in 5%
acetate acid solution, two minutes each time. The
non specific red color on Titan III-H Plate was
gradually diminished and only red protein bands were
left. Acetate cellulose membrane was dried in an oven
at 56 oC for ten minutes afterward.

Benzidine Staining. The separation plate was
placed in a jar for Benzidine staining. The plate was
layered with Benzidine solution containing 200 ml
distilled water, 0.4 g Benzidine, 1.0 ml glacial acetic
acid, and 0.4 ml of 30% H

2
O

2
. Peroxidase activities

of hemoglobin were revealed by the formation of  blue
bands or spots within the first 20 minutes, then the
color of the bands gradually changed to green-brown.
After 20 minutes of staining, Titan III-H Plate was
washed in a solution of methanol [Merck], and distilled
water (1:1).

RESULTS

The electrophoretic separation of eel, catfish,
green turtle, suckermouth fish, umbilical cord,
thalassemic patient and normal adult human blood
showed different hemoglobin migration patterns.
Both staining, Ponceau and Benzidine, showed
identical migration pattern and distances of
hemoglobin bands (Figure 1A & B).

The image of stained proteins or hemoglobins
were then analyzed and edited by using Adobe
Photoshop CS4. The editing process was aimed to
change the background to dark and hemoglobin
migration bands to bright colors. Figures will
automatically change to black and green or purple
(Figure 2 & 3). The migration distance of each
hemoglobin band after Ponceau staining is shown in
Figure 2, while hemoglobin electrophoresis results
with Benzidine staining is shown in Figure 3.

The migration distance of each hemoglobin band,
after Ponceau or benzidine staining was measured
from the starting point of application to the ultimate
frontier of each hemoglobin band. The results can
be seen in Table 1.

From Figures 1A and B, Figure 2 and 3, we can
see different hemoglobin band migrations. There were
three similar bands showed both by thalassemic blood
and normal adult human blood. The direction of
migration was also very interesting to be seen. While
all hemoglobin in this study migrated to the cathode
(positive pole), the sucker mouth fish hemoglobin
migrated slightly to the contrary direction, the anode
(negative pole).
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DISCUSSION

In this study, we try to understand if the difference
of oxygen binding capacities from various species or
individuals who are habituated to live in a relatively
low oxygen pressure can be reflected by the
electrophoretic migration pattern of their hemoglobin
(Leichtle et al. 2011). We chose the hemoglobin
because it is the only protein which bind directly and

               a          b         c          d       e          f        g                                     a         b         c          d         e         f         g
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Figure 1. Result of electrophoresis of hemoglobin samples and control application on Titan III cellulose acetate membrane. A.
Ponceau straining, B. Benzidine straining, X: Hemolysate application, a: Hb of sucker mouth fish Hyposarcus pardalis,
b: Hb of catfish Clarias Bathracus, c: Hb of eel Monopterus albus, d: Hb of Chelonia mydas, e: Hb of human umbilical
cord blood, f:  Hb of β thalassemia patient, g: Hb of human adult.
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Figure 3. Hemoglobin electrophoresis pattern after benzidine
staining and editing process using Adobe Photoshop
CS4. Numbers next to hemoglobin migration bands
are markers for discussion purposes. X: Hemolisate
application dot, a: Hb of suckermouth fish
Hyposarcus pardalis, b:  Hb of catfish Clarias
Bathracus, c: Hb of eel Monopterus albus, d: Hb of
Chelonia mydas, e: Hb of human umbilical cord blood,
g: Hb of beta thalassemia patient, f: Hb of human
adult.
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Figure 2. Hemoglobin electrophoretic pattern after Ponceau

staining and editing process using Adobe Photoshop
CS4. Numbers next to haemoglobin migration bands
are markers for discussion purposes. X:  Hemolisate
application dot, a: Hb of suckermouth fish
Hyposarcus pardalis, b: Hb of catfish Clarias
Bathracus, c: Hb of eel Monopterus albus, d: Hb of
Chelonia mydas, e: Hb of human umbilical cord blood,
f: Hb of beta thalassemia patient, g: Hb of human
adult.

immediately the environmental oxygen, in air as well
as soluble in water (Criner et al. 2010). Based on an
assumption that various hemoglobin has a similar heme
moiety, it can be predicted that oxygen binding
capacities difference of hemoglobin must rely on the
difference of its protein component (i.e. the globin)
(Roshan et al. 2011). If this is the case, then the
difference between the globin parts must be based
on the amino acid sequences, which, in their turn could
be reflected in the molecular weight and in the pI
(isoelectric pH) (Tan et al. 2009). The most
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convenient, easiest but reliable method to study
physicochemical properties is electrophoresis
technique. Any difference in migration pattern of 2
molecules must be caused by the two physicochemical
characteristic, molecular weight and pI (Sadikin et
al. 2012). This, of course, is directly related to the
total number of amino acids and also to the number
of charged amino acids (Puspitaningrum et al. 2010).
Based on this assumption, we used 3 spesies of fish
which live in the muddy bead of river or pond
(Richards 2011), like eel, catfish and sucker mouth
fish (Olayemi 2012). We compared with the
hemoglobin from sea turtle, umbilical cord blood and
also thalassemic patient blood. We deliberately
compared the mud fish hemoglobin with these lung-
respiration individual hemoglobin, for 2 reason. Sea
turtle, newborn and patient, all are terrestrial
organisms that breathe the oxygen from the
atmosphere, but sea turtle spend most of its time
under sea water (Schuyer et al. 2012). Cord blood is
fetal blood when its stayed in the womb, which means
a hypoxic or event an anoxic condition (there is no
free oxygen in the amniotic sac). The thalassemic
patient undergoes a relatively hypoxic condition,
because of the anemic condition (Bain 2010).

In this experiment, CCl
4
 was used as a hemolytic

agent. The lipid membrane of erythrocytes was
dissolved by this organic solvent and the hemoglobin
was liberated (Capote et al. 2011). However, this
red protein itself is a water-soluble molecule and the
hemoglobin samples were taken from the upper part,
the water layer.

As a protein, hemoglobin is a charged molecule
when dissolved in a buffer whose pH is different
from the protein pI (Qu et al. 2011). In this experiment,
we used a buffer solution with alkaline pH (8.6) as
an electrophoretic buffer. Because most protein have
pI around 5-6, they are charged negatively and will
migrate toward the anode. In our experiment, all
hemoglobin migrated toward positive pole (anode)
(Unnerstales & Maler 2012). Nevertheless, there
was one type of hemoglobin which migrated slightly
toward the cathode. We can conclude that the sucker
mouth fish hemoglobin has a pI which, in contrary to
most protein, is relatively alkaline. This means that
the globin, protein part of hemoglobin, in this animal
is very different from the other hemoglobin. Proteins
in an electrophoretic analysis can be revealed by
various stainings, like Ponceau staining, amido black
staining or Coomassie crystal blue staining. In this
study, we used the Ponceau staining because this
technique is fast and simple, yet still specific in
coloring any protein. However, because we work with
cell lysate (in this case hemolysate), we suppose that
there could be other proteins beside hemoglobin in
the hemolysate. That is why we stained also the
electrophoretic plate with benzidine. This technique
is not based on protein property of hemoglobin, but
on the peroxidase activity of hemoglobin. This protein
can also act as a peroxidase, by catalyzing the H

2
O

2

breakdown using benzidine as an electron donor.
Consequently the benzidine is oxidized which give
rise to dark blue color. In this study, we found that
both staining techniques give practically the same

Table 1. Samples’ haemoglobin bands from electrophoresis application dots and thickness

                                                                                               Migration distance of hemoglobin from        Thickness of hemoglobin
                                                                                        electrophoresis hemoglobin application dots               band  (pixel)

                                                                                                       Ponceau                Benzidine               Ponceau         Benzidine
                                                                                                       staining                   staining                  staining           staining

Haemoglobin samples Band

Suckermouth fish Hyposarcus pardalis

Catfish Clarias bathracus
Eel Monopterus albus

Green sea turtle Chelonia mydas
Human umbilical cord

Beta thalassemia patient

Human adult

1
2
3
4
1
1
2
3
4
1
1
2
1
2
3
4
1
2
3

75
81

102
112
160
73
85

109
137
200
113
131
58
79

127
147
57
78

146

80
93

114
144
170
81

103
125
154
206
126
140
69
87

124
146
70
86

149

2
5
5
6

19
7

13
6
3

17
7
7
8
6
6
9
9
6

15

5
4

11
18
17

6
12
10

7
16

9
12

6
7

19
9
6
7
9
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results. Both techniques give the same number of
bands in each sample and same pattern of migration.
We can conclude that practically hemoglobin is the
major protein in erythrocyte.

Normally, adult hemoglobin in human (HbA) has
the fastest migration toward the positive pole in the
electrophretic field  (Gyasi et al. 2012). In this
experiment, this is represented by band 3 of lane g,
band 4 of lane f of thalassemic blood, and band 2 of
lane e of human umbilical cord blood. All these bands
migrate in a relatively same distances, in Ponceau
staining as well as in benzidine staining. Other bands
in umbilical cord blood and in thalassemic blood that
migrate relatively slower can be considered as
another type of Hb. In umbilical cord blood it will be
fetal hemoglobin (HbF). In thalassemic patient, often
as compensation mechanism in chronic anemia, blood
might contain other type of hemoglobins, among them
is HbF. Though it is not yet possible to determine
definitely the type other hemoglobin in umbilical cord
blood and in thalassemic blood, at least it can be said
that the other type of Hb is a compensated Hb. It is
well known that HbF has a higher affinity to O

2
. The

compensated Hb in thalassemic blood might be HbF,
HbA

2
 or even pathologic Hb (Jones et al. 2011).

.
Whether

the compensated hemoglobin (other than HbF) have
a higher affinities to O

2
 is not yet known, though

logically it should be the case.
If higher oxygen affinity hemoglobin has a slower

migration, than it can be well seen in sucker mouth
fish. This fish lives in muddy bead of river, a condition
with low oxygen content. The sucker mouth fish
hemoglobin is dominated by a type of hemoglobin
which relatively immobile or even slightly move to
negative pole (cathode). We can suppose that this
hemoglobin has a pI near the buffer pH (8.2) or even
slightly higher. This, of course has a molecular base
in amino acid sequences. The other hemoglobin,
though migrate to anodic pole, are still lower than
HbA of human blood. The phenomena are also
observable in eel (lane c), other fish which lives also
in mud. However, catfish, another mud living aquatic
animal, has hemoglobin with a migration similar to
HbA (lane b). The same phenomenon is observed
also in green sea turtle (lane d). Sea turtle breathe
with lungs and takes oxygen directly from the air, but
catfish uses gills for extracting oxygen from water
(Puspitaningrum et al. 2011). It is not yet clear, why
catfish has a hemoglobin whose electrophoretic
pattern similar to HbA.

This electrophoretic observation suggests that
hemoglobin needed for living in low oxygen content
condition or environment is a different molecule.
Whether the hemoglobin has a higher affinity to

oxygen is not yet known. Further study is needed to
clarify this issue.
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