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1. Introduction
  

	 In accordance with regulations surrounding 
endangered species to avoid invasive sampling 
practices, geneticists have moved towards non-
invasive methods by collecting feces, urine, food 
waste, and other discarded materials (Inoue et al. 
2007; Rutledge et al. 2009). It is now possible to 
extract viable DNA from these wildlife by-products 
and primate conservationists have begun to build 
protocols to investigate populations using these 
sample types (Goossens et al. 2000; Nsubuga et al. 
2004; Simons et al. 2012). 
	 Orangutans (genus: Pongo) as semi-solitary 
arboreal, deep forest primate group, present an 
extreme example of how difficult non-invasive 
genetic sampling can be in the wild. However, over 
the past two decades there have been several studies 
using non-invasive fecal sampling investigating 

relatedness and metrics of genetic diversity within 
populations from study sites in Borneo and Sumatra. 
These studies which used different methods and 
genetic markers produced a range of results for each 
site; for example higher female relatedness was 
found in Sebangau (Q and G r = 0.046 and Wang r = 
0.166; Morrogh-Bernard et al. 2011) and in Tuanan 
(TrioML, Wang, and Q and G; Arora et al. 2012) and 
more equal but low relatedness within males and 
females at Ketambe (Q and G r = -0.095 and r = -0.108, 
respectively; Utami et al. 2002) and more equal but 
high relatedness within males and females at the 
Lower Kinabatangan Wildlife Sanctuary (Q and G 
r = 0.142 and r =0.148, respectively, Goossens et al. 
2006). Understanding how these relatedness values 
are influenced by dispersal and reproductive patterns 
have direct consequences for species viability in the 
wild. Thus, having high quality and efficient methods 
to study these patterns is important for assessing 
management options.
	 Despite much improvement in genotyping 
practices, microsatellite (or Short Tandem Repeat, 
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STR) analysis used in the majority of past orangutan 
genotyping studies is time consuming and requires 
multiple sample replicates to ensure all loci are 
amplified during the PCR process; further it is often 
plagued with issues of low initial template DNA and 
failure of amplification of some loci due to inhibitors 
from co-extracted fecal matter. STR DNA fragments 
also require visualization through gel electrophoresis 
which is another labor intensive multistep process. 
	 Recent improvements in next generation 
sequencing and genotyping techniques have 
provided a relatively swift genotyping process which 
is increasingly affordable for often inadequately 
funded primate conservation projects (Vigilant and 
Guschanski 2009). Single nucleotide polymorphism 
(SNPs) loci have been identified and mapped across 
the human genome, and are being discovered 
increasingly for model and non-model organisms 
(Kanthaswamy et al. 2009; Norman et al. 2013; 
Rianti et al. 2015; Bourgeois et al. 2018). The use 
of commercially available sequencing kits and 
microarray genotyping chips across closely related 
species has helped discovery of conserved SNP 
loci (Miller et al. 2011; Ogden et al. 2012; Hoffman 
et al. 2013). However, researchers have not yet 
taken advantage of the relative genetic closeness of 
orangutans to humans for which the most commercial 
products are currently targeted.
	 In order to streamline the process of non-invasive 
genotyping to investigate the genetic relatedness of a 
previously unsampled local wild Bornean orangutan 
(Pongo pygmaeus) population at the Camp Leakey 
research site, we designed and assessed a new 
protocol for microarray SNP genotyping of orangutan 
DNA isolated from feces. This paper details a novel 
process which combines fecal DNA extraction with 
a modified magnetic bead enrichment capture 
technique, FecalSeq (Chiou and Bergey 2018), 
followed by orangutan genomic SNP genotyping by 
cross species use of human targeted microarray chips. 
Relatedness estimates produced by genotyping with 
this new process are complimented and assessed 
by comparison with a micro-capillary STR marker 
genotype dataset.

 2. Materials and Methods

2.1. Study Site
	 With an area of approximately 4,150 km2 (1,886 
km2 of orangutan habitat), Tanjung Puting National 
Park (Figure 1) is one of the largest protected areas 
in Central Kalimantan (Utami-Atmoko et al., 2017). 
The Camp Leakey study area was initially established 
within a 35 km2 area and contains a mix of dry ground 

tropical heath and dipterocarp forests with veins of 
permanently wet and seasonally flooded peat swamp 
threaded throughout (Galdikas 1979). The local 
wild orangutans are behaviorally observed on an 
ongoing basis within the study area which contains 
maintained trails (Galdikas 1982, 1985, 1988).
	 In ongoing data collection at Camp Leakey since 
its establishment, local wild individuals who are 
identifiable by local staff and researchers, as well 
as any unidentified individuals encountered, are 
behaviorally studied through follows from nest to 
nest each day. Data are collected by focal follows 
of orangutans for ten day periods. Matrilineal lines 
have been recorded for at least three generations 
on females whose home range included the Camp 
Leakey study area site. Thus, some relatedness values 
between sampled individuals are known and mother 
offspring pairs were identified in Table 1.

2.2. Sample Collection 
	 Fecal sampling of wild orangutans within the Camp 
Leakey study area took place between January and 
August 2016. Once located and visually identified and 

Figure 1. The Camp Leakey Study Area is located along the 
Sekonyer River in the northern portion of Tanjung 
Putting National Park in Central Kalimantan, 
Indonesian Borneo, Indonesia
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confirmed by experienced field assistants as either 
a known or unknown wild individual, orangutans 
were followed continuously until defecation was 
observed. Fecal samples were collected in duplicate 
and stored as per a two-step method (Nsubuga et al. 
2004). Samples (approx. 2-10 g) were collected using 
sterile gloves and a sterile collection spoon to avoid 
contamination, and initially stored in 30 ml of 97% 
ethanol solution (step one). Ethanol solution was 
discarded 24 to 36 hours later and ~10 g of silica gel 
beads were placed inside sample container (step two). 
Samples were then transferred stored in refrigerator at 
-40°C until processing. Samples were collected under 
approved Central Washington University IACUC, 
with permissions from the Indonesian Institute of 
Sciences (LIPI), the Director general of Indonesian 
Directorate of Biodiversity Conservation, with prior 

informed consent from Tanjung Puting National 
Park with assistance from Orangutan Foundation 
International staff, and exported from Indonesia to 
Central Washington University under the Convention 
on International Trade in Endangered Species export 
permit 01152/IV/SATS-LN/2017.

2.3. DNA Extraction 
	 DNA was extracted using the QIAamp DNA 
Stool Mini Kit® Qiagen DNA extraction kit. Initial 
DNA extraction was conducted by hand and then 
subsequent extractions were automated using the 
QIAcubeTM robot for increased standardization. 
The standard kit protocol was used except with 
modification of an extended cell lysis step with an 
overnight incubation period of 14-18 hours in 23°C 
heat block after addition of lysis buffer and prior to 

Table 1. Orangutans genotyped in this study

**two sample extracts from these individual orangutans were genotyped on the SNP chip 
Orangutans with names are those who were identified 100% by at least two local field staff and witnessed on multiple 

occasions in the study area during sample collection. The others represent either unknown individuals or those whose 
identity was not absolutely verified at the time of collection

SNP and STR Sex
Female

Male
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Male
Male
Male
Male
Male
Male
Male
Male
Female
Female
Female
Female
Female
Female
Female
Female
Female

SNP and STR

SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP** and STR
SNP and STR
SNP and STR
SNP** and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP and STR
SNP
SNP
SNP
STR
SNP and STR
STR 
STR
STR
STR
STR
STR

Orangutan ID Previously known relationships
BDM1 is mother to JMM12 and 
ABDM12 and older sister to BDM3

Younger sister to BDM1
No known
No known
BDR1 is mother to ABDR1

BDP1 is mother to BR01

BD01 is mother to ABD01

No known 
No known 
No known
No known
No known
No known
No known
No known
No known
No known
No known
ABDM21 is niece to BDM1 and BDM3 
BD07 is mother to ABD07

BD06 is mother to ABD06

No known
No known
No known
No known

BDM1 (Mooch)

JMM12 (Mario)
ABDM12 (Molly)
BDM3 (Macey)
BDN1 (Noisy)
BDN11
BDR1 (Renie)
ABDR1 (Rutha)
BDP1 (Pete)
BR01 (Pamela)
BD01 (Erma)
ABD01 (E2)
BD02 (Aluh)
BD02Q
BD04
ABD05
JDP1 (Ponorogo)
JD01
JR02
JR08
JR09
JD03
JR01
ABDM21 (Maureen)
BD07
ABD07
BD06
ABD06
BD03
AB10
BD08 (Beth)
BD09

Age class
Adult

Juvenile
Infant
Adolescent 
Adult
Adult
Adult
Infant
Adult
Adolescent
Adult
Infant
Adult
Adult
Adult
Infant
Adult
Adult
Juvenile/adolescent
Juvenile/adolescent
Sub adult
Sub adult
Juvenile/adolescent
Infant
Adult
Infant
Adult
Infant
Adult
Juvenile
Adult
Adult

64	                                                                                                                                                         	 Linsky RE et al.



HAYATI J Biosci                                                                                                                                                               	    65
Vol. 29 No. 1, January 2022

insertion into the QIAcubeTM machine. An additional 
extended incubation hold of 30-120 mins was added 
before final elution step. For microsatellite (STR) 
analysis, extracts underwent a double inhibitor 
cleanse where samples (or existing extracts) were 
incubated in Inhibit-Ex buffer as well as an Inhibit-
Ex tablet for the 14-18 hours as stated above. Total 
DNA was then quantified using a NanoDrop 2000 
spectrophotometer reading. 
	 Analysis was conducted on DNA isolated from 
fecal samples from 32 wild individuals at Camp 
Leakey. This included two adult wild males, 14 adult 
females, two adolescent nulliparous females (with 
known maternity), eight infant or young juvenile 
offspring (seven with known maternity among those 
sampled), four juvenile/adolescent males (one with 
known maternity, the others unknown and found 
traveling on their own), and two unknown subadult 
males. In total 15 of these individuals were known 
and named, in that they were identified by at least 
two local field staff and witnessed on multiple 
occasions in the study area during sample collection. 
The others represent either unknown individuals or 
those whose identity was not absolutely verified at 
the time of collection. The orangutans sampled and 
genotyped in this study are listed in Table 1.
	 To gauge initial quantity of orangutan DNA 
extractions, quantitative real-time PCR (qPCR) was 
conducted on samples using universal mammalian 
MYCBP primers (Higuchi et al. 1993) and a SYBR 
green Universal Master Mix on the BioRad iQ5 
Optical qPCR system. Multiple (2-4) DNA extractions 
were conducted for each individual (except three 
individuals were only able to be extracted once due 
to a low quantity sample) and initial 69 DNA samples 
were evaluated for quality and relative quantity by 
the ability to be amplified with real time PCR. Only 
samples with total orangutan DNA greater than 
20 ng were used for the SNP microarray analysis. 
Extracts that were less than 20 ng were pooled for 
each individual for either further enrichment or to be 
run directly on the microarray. For those individuals 
whose samples were pooled for SNP genotyping, 
further extracts were conducted for STR analysis but 
were not evaluated and quantified using qPCR.

2.4. Genotyping
	 For microarray SNP analysis, the FecalSeq 
(Chiou and Bergey 2018) technique, based on the 
New England Bio-labs NEBnext Microbiome DNA 
Enrichment Kit, was used on a subset of 27 individuals 
to separate host orangutan DNA from co-extracted 
fecal microbial DNA. This technique uses methyl-
tagged magnetic beads which bind selectively to 

CpG-methylated eukaryotic DNA which can then 
be separated from the remaining bacterial sample 
using a magnet. The resulting host enriched DNA was 
utilized for microarray SNP analysis. Samples post 
enrichment were further evaluated and quantified 
using the above outlined qPCR technique, with the 
addition of a universal bacterial 16S rRNA primer 
(Corless et al. 2000), to test for a decrease in bacterial 
concentration in order to assess sample enrichment 
success.
	 SNP microarray analysis was conducted on 48 
samples which consisted of the following: 1 human 
DNA extract used as a positive control, 27 extracts from 
the FecalSeq enrichment process, and the remaining 20 
were un-enriched extraction products. DNA extracts 
underwent a quality check and gender confirmation 
using Taqman real time PCR quantification and were 
run on an Illumina Infinium Human QC microarray 
SNP chip to identify homologous human single 
nucleotide polymorphism (SNP) loci. Microbeads 
on the chip hybridize specific known human SNP 
locations using targeted probes. UV light causes 
fluorescence of the bound colored probes as specific 
nucleotides hybridize resulting in light intensity and 
color data. These data are translated using custom 
proprietary Illumina software, GenomeStudio2.0.
	 In order to assess the quality of microarray 
genotypes and resulting relatedness estimates, 
microsatellite (STR) marker genotyping through 
targeted amplification and visualization was also 
performed. Eight STR autosomal markers were 
selected from those used in several former studies 
and described by Nietlisbach et al. (2010). These short-
repeated sections were amplified using targeted 
primers and through polymerase chain reaction (PCR) 
thermocycling. PCR conditions followed Arrora et al. 
(2010) and Nietlisbach et al. (2010) using SigmaAldrich 
Redtaq mastermix. A subset of samples underwent 
multiple amplifications for each of the targeted 
regions. Error rates were calculated from this subset. 
PCR amplifications were electrophoresed on micro-
capillary DNA1000 chips on the Agilant Bioanalyzer 
2100 machine. Resulting electropherogram data 
were visualized and analyzed using the Agilant 2100 
Expert software. Fragment variant lengths for eight 
autosomal tetra-nucleotide loci, five Pongo specific 
(Nietlisbach et al. 2010) and three human specific 
(Goossens et al. 2005), (Table 1) were coded visually 
using the gel-like densitometry plot data comparison 
view. High quality Pongo DNA, and human DNA, as 
positive control, were amplified alongside samples 
to confirm band sizes and intensity. Bands were 
identified as separate loci when repeatedly amplified 
or observed (more than once) and when at least four 



base pairs apart from bands above or below (once 
corrections between chip runs were done). In total 29 
individuals underwent genotyping using this method 
(e.g., 22 of the same individuals with SNP genotypes). 

2.5. Statistical Analysis
	 Allele frequencies and distinct individual 
identities were confirmed using Cervus (Kalinowski 
et al. 2007) software for both genotyping techniques 
(e.g., microarray and STR). Resulting genotypes from 
both methods were analyzed for Hardy-Weinberg 
equilibrium and to assess linkage disequilibrium using 
online software GenePop (Rousset 2008). In order 
to assess quality of SNP genotypes and to compare 
to the STR dataset, resulting pairwise relatedness 
values were calculated for the 22 individuals within 
both datasets using the triadic likelihood estimator, 
TrioML (Wang 2007), and two moment estimators 
used in past studies, the coefficient of Wang 
(Wang 2002), and Queller and Goodnight pairwise 
relatedness estimator (Queller and Goodnight 1989), 
rxy, using the Colony 2.0 (Jones and Wang 2010) and 
COANCESTRY 1.0 (Wang 2011) software. Relatedness 
values for the subset of 22 individuals within both 
datasets were calculated using allele frequencies 
from adults in each entire dataset. Overall group and 
pairwise relatedness values calculated with each 
estimator were tested for correlation through paired 
and unpaired t-tests and Mantel matrix correlation 
tests in the ade4 (Dray and Dufour 2007) package in 
the R statistical environment (R Core Team 2014).
	
3. Results

3.1. Genotyping
Average total orangutan DNA proportion per 

100 µl extract was 3.31% (range <0.01–82.7%). After 
undergoing the FecalSeq magnetic bead enrichment 
process to separate endogenous orangutan DNA from 
that of contaminating microbiome found in feces, 
bacterial DNA quantities in extracts decreased from 
30-500 fold (median 140 fold decrease). While Pongo 
DNA quantities decreased as well, the average was by 
about half (median = 57% initial DNA remaining, range 
12-95.8%), but was enriched compared to bacterial 
DNA. The 27 post-enrichment samples with highest 
orangutan concentrations, were then chosen to be 
run on the Illumina SNP microarray. Initial quality 
control Taqman qPCR testing confirmed the known 
sexes of 38 of 45 samples run on the microarray 
(with the 7 unconfirmed due to low signal and 
none providing opposite sex assignment) as well as 
identified the unknown sex of three infants. Total DNA 
concentrations for enriched samples ranged from 

0.85 ng/µl to 7.39 ng/µl and total DNA concentrations 
for un-enriched samples were 14.3ng/µl to 48 ng/µl.

Microarray data from un-enriched samples was 
poor, with light intensity (Norm R) and color (Norm 
Theta) results scattered across the spectrum (grey 
scattered dots in Figure 2). Clustering did not occur 
as should be expected in comparison to human DNA 
results. However, for the enriched samples visual 
inspection identified 125 of the SNP loci out of 15, 
949 on the microarray that provided clear assignment 
signals and clusters (green dots in Figure 2). These 
125 loci (0.78% of the total on the microarray) were 
further identified as presenting similar clustering 
patterns to those of human data (examples of this at 
four SNP loci discovered are shown in Figure 2) and 
presenting high enough minor allele frequencies (125 
> 0.018, 104 > 0.1, 61 > 0.2) to be used for genotyping.

The 125 homologous bi-allelic SNP loci 
(Supplementary S1) were used to create genotypes 
for 27 individuals at a minimum of 65 (52% of the 
total 125) loci. Through identity analysis, two pairs of 
samples originally assumed to represent four unique 
individuals in the 27 individuals in this SNP dataset 
were identified as representing two individuals each 
sampled twice, matching at respectively all 93 and 
81 loci in common and both pairs mismatching at 0 
loci. These two pairs of individuals were confirmed 
as representing just two individuals sampled in 
repetition but whose identities were not 100% 
confirmed in the field at the time of collection. The 
mean proportion of the 125 SNP loci typed for the 
27 individuals was 0.72 and combined non-exclusion 
probability of identity was 3.07e-37.

STR genotyping was conducted on 355 PCR 
amplifications for 33 individuals. Samples from 
four individuals repeatedly did not amplify so we 
were unable to genotype them using this method. 
Thus, we produced successful genotypes for 29 
individuals. Of the successful amplifications 39% 
were individuals genotyped in duplicate, 14% were 
individuals genotyped in triplicate, and 7% were 
individuals genotyped more than three times. 
Allelic drop out error rates were calculated from this 
multiple genotyping to be 0.055. Mean proportion of 
STR loci typed was 0.88, and combined non-exclusion 
probability of identity was 6.6e-7.

3.2. Genetic Diversity 
Overall average observed heterozygosity (Ho) for 

the 125 SNP markers was 0.36, SD = 0.19, average 
expected heterozygosity (He) was 0.34, SD = 0.14, 
with average polymorphic information content (PIC) 
of 0.27, SD = 0.092. Average inbreeding co-efficient 
(FIS) was -0.037, SD = 0.32. Of the 125 individual SNPs, 
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10 loci differed significantly from H-W equilibrium 
(α = 0.05), with both lower and higher than expected 
heterozygosity and corresponding high and low FIS 
values. These values can be found in Supplementary 
S1. 

Allele frequency calculations and tests for 
heterozygosity and deviation from Hardy-Weinberg 
(H-W) equilibrium for the eight microsatellite 
STR autosomal markers found average observed 
heterozygosity (Ho) to be 0.65 with an expected (He) 
value of 0.66 with average PIC of 0.591, with one 
marker D13S765 showing significant deviation from 
H-W equilibrium (p = 0.001). Average FIS inbreeding 
coefficient for the 8 autosomal markers was 0.003 
(SD = 0.14). These values can be found in Table 2.

3.3. Relatedness 
Initial Cervus identity analysis of the SNP dataset 

also confirmed the shared identity of the two pairs 

of individuals each sampled twice within the SNP 
samples as well as verified all other individuals as 
unique. These duplicate genotypes were removed 
and not used for further analysis. Identity analysis of 
the STR data confirmed all the individuals as unique. 
This resulted in 25 individuals with SNP data, 29 with 
STR data, and 32 unique individuals in total.

Pairwise relatedness estimates of the coefficient of 
Wang produced by Coancestry and parentage analysis 
using Colony confirmed four of five known mother 
offspring pairs in the SNP Data and the one non-
confirmed pair gave a maximum r estimate of 0.23, 
and confirmed all seven within the STR data (Table 3). 
Average mother-offspring relatedness across all three 
estimators was 0.46 sd = 0.19 (SNP data) and 0.43 sd 
= 0.16 (STR data).

Pairwise relatedness values for the 22 individuals 
with both SNP and STR genotypes were compared 
using a Mantel correlation test and showed a positive 

Figure 2. GenomeStudio SNP graph clustering results for four SNP loci. Orange dots are sample human data, green dots are 
the 27 enriched samples and dark grey dots are unenriched samples. Norm Theta represents the light color read 
and Norm R is the light intensity. Circles and dark colouration are areas where allele assignments or calls are 
made. The two exterior red and blue circles represent homozygous calls and center purple is heterozygous call
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Table 2. Autosomal microsatellite (STR) markers

Table 3. Expected and estimated pairwise relatedness (Wang (r)) for known mother-offspring pairs 

*indicates a statistical departure from HW equilibrium 
Allelic diversity A, number of genotyped individuals, observed heterozygosity HO, expected heterozygosity HE, polymorphic 

information content PIC, average FIS (Weir and Cockerham 1984) and p-value plus standard error S.E. of probability test 
for deviation from Hardy-Weinberg (HW) equilibrium

Name

Related mother-offspring Pairs

n HO HE PIC P-val S.E. FIS Wa and C

Expected relatedness STR relatedness SNP relatedness 

25
26
29
25
26
27
25
21

5
2

0.60
0.81
0.69
0.40
0.77
0.59
0.72
0.62

~0.5
~0.5
~0.5
~0.5
~0.5
~0.5
~0.5

0.49
0.44
0.48
0.67
0.38
0.57
0.61

0.45
0.71
0.23
0.61
0.64

-
-

26
2

0.49
0.78
0.64
0.44
0.69
0.75
0.74
0.73

0.65
0.12

Average
SD

0.42
0.72
0.55
0.34
0.64
0.69
0.69
0.66

0.66
0.12

0.52
0.10

0.652
0.194
0.514
0.663
0.850

0.001*
0.439
0.580

0.59
0.13

0.53
0.19

0.004
0.007
0.008
0.002
0.007
0.001
0.016
0.006

-0.233
-0.042
-0.082

0.101
-0.112
0.213
0.020
0.160
0.003
0.140

O4_6
O4_B5
O4_A1
O4_B20
O4_CHR5
D13S765
D6S501
D13S321

BDM1
BDM1
BDR1
BDP1
BD01
BD07
BD06

Marker type
Pongo 
Pongo 
Pongo 
Pongo 
Pongo 
Human 
Human 
Human 

JMM12
ABDM12
ABDR1
BR01
ABD01
ABD07
ABD06

A

Mean
SD

3
5
4
2
6
6
7
4

correlation for all three estimators TrioML (r = 0.81, p 
<0.001), Wang (r = 0.34, p = 0.018), and Queller and 
Goodnight (r = 0.42, p = 0.0032). The two datasets 
were then combined for all 32 individuals and a third 
new “Combo” dataset was produced and compared.

Overall relatedness was calculated for each data 
set using three estimators and the combined dataset 
and is presented in Table 2. Overall relatedness in all 
32 individuals from the Combo (SNP and STR) dataset 
using the TrioML estimator was 0.082 (var = 0.021). 

Results of a paired t-test to compare the overall 
TrioML averages of the SNP (r = 0.096, var = 0.023) and 
the Combo dataset found no significant difference 
with conditions (t(612) = -1.31, p = 0.19). A test to 
compare the STR mean r = 0.082 (var = 0.020) and the 
Combo dataset also showed no significant difference 
(t(869) = 0.022,  p = 0.98).

We determined all males were related to two or 
more individuals in our sample at the level of first 
cousins or higher. A mother was able to be assigned to 
two unknown males (one subadult and one juvenile) 
within the study area. The two adult fully flanged 
males were estimated to have first cousin and higher 
relatedness with both females and other males within 
the sample. 

Average adult female relatedness within the 
sample is approximately between the levels of half 
cousin (or first cousin once removed) and first cousins 
(e.g., r values range 0.0625-0.125), with all adult and 
juvenile females having a close (e.g., at least half sib, 
aunt/niece, or first cousin) relative within the study 
area. One unknown adult female–adult daughter 
pair observed and sampled within close proximity 
was identified. This is the same mother of the two 
unknown males. Two other unknown adult females 
were identified as full siblings. 

4. Discussion

	 This is the first known study to combine the use 
of non-invasive fecal DNA sampling and extraction, 
methyl based enrichment FecalSeqTM (Chiou 
and Bergey 2018), and human targeted Illumina 
Infinium SNP microarray genotyping technology 
for population monitoring of an endangered great 
ape. The use of fecal DNA sampling has become 
standard for cryptic and sensitive endangered 
species. However, difficulties arising from low 
endogenous DNA quantity within samples remain 
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pervasive. Combining extraction with the FecalSeq 
methyl based magnetic bead capture enrichment 
technique increased the concentration of orangutan 
DNA (vs bacterial DNA etc). Of the samples that were 
tested on the Illumina microarray chip only those 
that underwent the FecalSeq enrichment process 
produced successful genotypes. Initial quantification 
of DNA samples indicated averages of approximately 
3% endogenous DNA in our fecal extractions which 
is consistent with published numbers (Perry et al. 
2010; Chiou and Bergey 2018). It is likely that this 
large amount of non-specific exogenous DNA in 
these samples overwhelmed the small quantity of 
orangutan DNA in pure un-enriched samples run on 
the microarray. By decreasing these non-specific DNA 
concentrations through enrichment, the orangutan 
DNA was able to be amplified and bind successfully 
to the homologous human based SNP tagged beads 
on the microarray. Despite low initial DNA quantities 
our results corroborate evidence that reliable results 
can be produced from “near nanogram” levels (Okitsu 
et al. 2013) on Illumina Infinium SNP microarrays. 
	 Cross species microarray analysis has shown to be 
possible within species as genetically distant as oryx 
(Oryx spp.) and modern domesticated bovine (Bos 
Taurus, e.g., divergent at least 23 million years from 
each other; Ogden et al. 2012) and Antarctic fur seal 
(Arctocephalus gazella) and domestic dogs (Canis lupus 
familiaris) who diverged approximately 44 million 
years ago (Hoffman et al. 2013). These studies were 
able to respectively identify 185 of 54,001 (0.34%) and 
173 of 173,662 (0.01%) homologous polymorphic loci 
in common. A further study of wild thin horn (Ovis 
dalli) and bighorn (Ovis canadensis) sheep genotyped 
on a chip designed for commercial domestic sheep 
(Ovis aries; e.g., divergent relatively more recently 
than the other examples at approximately 3 million 
years ago) identified 868 of 49,034 loci (1.7%) to be 
polymorphic and in common (Miller et al. 2011).  Early 
investigations into ancestral alleles among humans 
and apes also showed ape DNA can be genotyped 
using human microarrays (Hacia et al. 1999), and 
confirmed three and two common homologous 
polymorphic loci of 397 (0.75% and 0.5%) between 
bonobos and gorillas and humans respectively. Our 
results producing 125 common genomic polymorphic 

loci for P. pygmaeus of the 15,949 human loci (0.78%) 
probed for and fit percentages found by these past 
cross-species studies. These positive results suggest 
further attempts at cross species genotyping of Pongo 
DNA on much larger human mapped chips could 
identify many more common polymorphic SNP loci. 
	 In order to verify the quality of the SNP 
genotypes produced, microsatellite STR genotyping 
was conducted for comparison using the Agilent 
Bioanalyser 2100 through micro-capillary based 
electrophoretic chips. Despite the fact that resolution 
of tetrameric STR loci can be problematic on this 
platform (Fraige et al. 2013) the use of the 2100 Expert 
software electropherogram overlay and comparison 
context allowed for calibration of inter-gel and inter-
well differences. Using repeated amplifications, visual 
inspection, and known fragment lengths published 
by previous authors (Utami et al. 2002; Nietlisbach 
et al. 2010) variants were identifiable within known 
ranges and genotypes were successfully assigned. 
	 Allele frequencies calculations revealed one 
marker for the STR dataset and ten SNP loci showing 
significant deviation from H-W equilibrium. Average 
FIS values across all loci was negative across SNP loci 
and very close to 0 for STR loci. This negative FIS value 
in the SNP data suggests an excess of heterozygosity 
and the possibility of two formerly distinct groups 
now having admixture. However, more replicates 
across individuals are needed to confirm SNP 
assignment and reduce variance in order to help verify 
this phenomenon. Seven loci (i.e., 1 STR and 6 SNP) 
also showed a high departure from HW equilibrium 
could be the result of loss of heterozygosity through 
inbreeding within the sampled individuals.
	 Several comparisons of pairwise estimators 
of relatedness have detailed differences between 
various statistical methods categorized as either 
moment and likelihood methods. Wang (2007) 
compared the TrioML maximum likelihood estimator 
to several moment estimators including his newest 
moment estimator (referred to as Wang in Table 4) 
as well as more commonly used moment estimator 
by Queller and Goodnight (Q and G) and others. This 
comparison showed that the TrioML produces the 
most accurate estimates for large datasets both 
SNP and STR. Subsequent publications have shown 

Table 4. Mean sample wide relatedness values for each dataset 

Each dataset, number of loci used and how many individuals were included n, each of the three relatedness estimators 
TrioML, Wang, and Queller and Goodnight Q and G, followed by the variance for each estimate 

Dataset Wang (r)varTrioML (r) var#of loci varN Q and G (r)
SNP
STR
Combo 

-0.014
0.008
0.015

0.023
0.020
0.021

0.096
0.082
0.082

0.137
0.072
0.101

125
8

133

0.213
0.097
0.096

25
29
32

-0.062
-0.041
-0.071
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that in small datasets, where allele frequencies 
are estimated from the sample for which one is 
calculating relatedness (as is the case in our dataset), 
that population wide average moment estimates are 
expected to be negative and very close to 0. However, 
the modified product moment estimators by Wang 
(2014, 2017) and Ritland (Lynch and Ritland 1999) give 
the least biased pairwise estimates for high and low 
related individuals respectively. The Wang pairwise 
relatedness estimated for the known mother-
offspring pairs in our dataset indeed appeared to be 
closest to the expected 0.5. Through simulations with 
empirical data Taylor (2015) found that the TrioML 
estimator correlated closest to “true” relatedness 
and was least biased for estimates of pairs in high 
relatedness categories. Thus, it appears that there 
may be combinations of dataset sizes and types, 
and estimator types that produce the most accurate 
estimates for different levels of relatedness. The three 
relatedness estimators clearly produce quantitatively 
different sample wide averages in our study across 
all three of the datasets, with TrioML producing 
the highest r values, Wang producing a lower and 
very close to 0 overall r, and Q and G producing 
more negative relatedness values (Table 4.). These 
differences in our overall r estimates reflect different 
estimator biases. The inclusion of further genotyping 
from more individuals as well as more individuals 
with known relatedness would help to confirm if this 
is the case.
	 However, relatedness estimates calculated using 
the three estimators in our study were not significantly 
different between the STR and SNP datasets. Mantel 
correlation test of matrices of pairwise relatedness 
estimates for the 22 same individuals showed 
statistically significant strong positive correlations 
between r values between any two of the estimators 
compared. Additionally, we were able to confirm 
a majority of the known mother-offspring pairs 
with both datasets. The one mother offspring pair 
showing lower a relatedness of 0.23 could be due 
to misidentification of a sample taken with related 
mothers and offspring in near vicinity during sample 
collection. Overall, the combined results suggest 
sufficiently similar pairwise relatedness estimates 
between both of the SNP and STR genotyping 
methods and that this method can be used to assign 
relatedness in unknown individuals and is useful for 
understand orangutan demographics.
	 This study verified the existence of a closely related 
group of wild orangutans including adult males and 
females who are local to the Camp Leakey Study area. 
All sampled individuals appear to be from a dispersed 
but related community. More work will be needed to 
explicate the relationships in detail.  The results from 

this study show that orangutan DNA collected from feces 
can provide useful SNP genotypes when run on a human 
targeted micro-array. Endogenous fecal DNA is often 
co-extracted with high concentrations of bacterial DNA 
and inhibitors, thus the Fecalseq enrichment technique 
was critical to capture endogenous orangutan DNA 
and reduce inhibitors before conducting SNP analysis. 
The fact we produced similar relatedness and diversity 
estimates using this technique provides an exciting new 
avenue for great ape researchers for discovering SNP 
loci and genotyping from non-invasive fecal samples 
from the wild. New genotyping technologies based 
on the genetic closeness between humans and apes 
provide opportunities for understanding wild ape 
populations and providing critical genetic data to 
support conservation efforts. Any expansion of our 
knowledge of any of the remaining wild orangutan 
populations are critical for our overall understanding 
of the species as a whole and the likelihood of their 
survival long term.
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Supplementary S1. SNP Loci
Di-allelic human SNP loci, human chromosome number and MapInfo coordinate for SNP, number of individuals 

genotyped, observed heterozygosity HO and expected heterozygosity HE, polymorphic information content PIC, p-value 
of probability test for deviation from Hardy-Weinberg equilibrium, and average FIS (Weir and Cockerham 1984)

SNP name n HO HE PIC P-val S.E. FIS Wa and C

No information
25
23
24
20
20
20
17
20
22
10
20
19
18
19
20
19
21
14
17
18
21
20
16
13
25

6
16
23
21
21
19
15
21
15
13
21
11
19
19
21
21
18
20
19
22
20
19
11
24
20
11
23
19
20
18

0.16
0.04
0.13
0.45
0.35
0.55
0.88
0.55
0.09
0.70
0.30
0.37
0.44
0.47
0.55
0.16
0.14
0.43
0.35
0.17
0.24
0.25
0.44
0.39
0.32
0.33
0.50
0.61
0.33
0.62
0.16
0.47
0.24
0.20
0.31
0.29
0.36
0.26
0.21
0.24
0.62
0.33
0.15
0.21
0.68
0.20
0.16
0.27
0.29
0.15
0.18
0.22
0.21
0.10
0.44

0.15
0.04
0.19
0.45
0.30
0.45
0.52
0.48
0.24
0.48
0.26
0.31
0.51
0.46
0.41
0.15
0.14
0.35
0.30
0.25
0.22
0.51
0.42
0.32
0.27
0.55
0.48
0.46
0.29
0.44
0.15
0.37
0.22
0.19
0.27
0.48
0.52
0.24
0.19
0.29
0.47
0.36
0.14
0.27
0.50
0.26
0.15
0.52
0.31
0.14
0.17
0.20
0.27
0.10
0.36

0.136
0.042
0.169
0.342
0.247
0.342
0.375
0.359
0.208
0.351
0.222
0.255
0.375
0.349
0.319
0.135
0.124
0.280
0.248
0.211
0.188
0.374
0.323
0.262
0.233
0.375
0.359
0.351
0.239
0.336
0.135
0.294
0.188
0.164
0.226
0.360
0.373
0.202
0.171
0.239
0.354
0.286
0.129
0.231
0.370
0.222
0.135
0.375
0.258
0.129
0.152
0.175
0.231
0.090
0.286

1.000

0.207
1.000
1.000
0.607

0.004*
0.646

0.025*
0.221
1.000
1.000
0.655
1.000
0.256
1.000
1.000
1.000
1.000
0.274
1.000
0.030
1.000
1.000
1.000
0.476
1.000
0.180
1.000
0.116
1.000
0.530
1.000
1.000
1.000
0.077
0.540
1.000
1.000
0.451
0.188
1.000
1.000
0.371
0.186
0.352
1.000
0.220
1.000
1.000
1.000
1.000
0.374
1.000
0.526

0.000

0.002
0.000
0.000
0.002
0.000
0.002
0.001
0.002
0.000
0.000
0.002
0.000
0.002
0.000
0.000
0.000
0.000
0.002
0.000
0.001
0.000
0.000
0.000
0.002
0.000
0.002
0.000
0.002
0.000
0.002
0.000
0.000
0.000
0.002
0.002
0.000
0.000
0.002
0.002
0.000
0.000
0.002
0.002
0.002
0.000
0.002
0.000
0.000
0.000
0.000
0.002
0.000
0.002

-0.067

0.349
0.000
-0.188
-0.229
-0.752
-0.148
0.628

-0.500
-0.152
-0.200

0.139
-0.025
-0.357
-0.059
-0.053
-0.238
-0.185
0.329
-0.111
0.518

-0.050
-0.200
-0.171
0.412

-0.035
-0.322
-0.177
-0.429
-0.059
-0.273
-0.111

-0.077
-0.143
0.415
0.310

-0.125
-0.091

0.167
-0.327
0.064

-0.056
0.234

-0.370
0.240

-0.059
0.492
0.064

-0.056
-0.053
-0.100
0.234

-0.027
-0.259

1:25617206-CT
1:25729163-GA
19:49206962-GA
19:579157-TC
6:31239829-CT
6:32610134-GA
9:136131022-C-T
9:136131415-CT
9:136137555-G-A
9:136146449-TAAGAC-T
9:139925644-GA
9:139925843-CA
exm2229707
exm224876
exm2260060
exm2260204
exm2260552
exm2261221
exm2261348
exm2262610
exm2264375
exm2265018
exm2265648
exm2266502
exm2266554
exm2267112
exm2267114
exm2268218
exm2269623
exm2270539
exm2271402
exm2271881
exm2272151
exm2272325
exm2272572
exm51163
exm518984
exm526563
exm537081
exm537383
exm537454
exm537513
exm612728
exm-rs3117034
exm-rs8176746
JHU_1.3691239
JHU_11.35177589
JHU_11.35216457
JHU_17.42329003
JHU_17.42330696
JHU_2.127436468
JHU_22.43100132
JHU_6.10535520
JHU_6.10535603
JHU_6.32607324

Human
chrom

1
1

19
19

6
6
9
9
9
9
9
9

19
2
1

13
16

2
3
9
9
1
3
7
7

10
10
19

3
6

10
12
14
15
17
1
6
6
6
6
6
6
7
6
9
1

11
11
17
17
2

22
6
6
6

Coordinate

25290715
25402672
48703705
579157
31272052
32642357
133255635
133256028
133262152
133271018
137031192
137031391
48596811
126696000
240579605
41549067
50669787
236300554
10664912
137345126
138066115
74396083
188976960
5793154
101448189
81963701
84338568
12581187
51378937
161727303
55891194
129933255
20349972
90960641
8124275
42830512
18143724
29828746
32938875
33068728
33069863
33080851
30922175
33119581
133255935
3774676
35156043
35194911
44251636
44253329
126678893
42704127
10535288
10535371
32639548
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Supplementary S1. Continued
SNP name n HO HE PIC P-val S.E. FIS Wa and C

19
16
16
17
15
17
17
21
20
14
17
19
16
14
21
15
19
16
13
19
12
18
20
23
12
10
17
17
25
11
22
19

8
16
21
17
19
21
12
19
17
21
17
19
18
16
20
19
25
22
22
12
18
18
21
18
16
20

0.63
0.81
0.31
0.35
0.07
0.65
0.35
0.67
0.70
0.21
0.82
0.47
0.56
0.64
0.24
0.47
0.21
0.38
0.15
0.21
0.67
0.39
0.20
0.44
0.42
0.30
0.12
0.71
0.24
0.55
0.00
0.63
0.63
0.38
0.00
0.18
0.21
0.29
0.50
0.37
0.18
0.05
0.59
0.53
0.61
0.56
0.05
0.21
0.24
0.23
0.27
0.42
0.22
0.11
0.48
0.61
0.25
0.40

0.48
0.50
0.27
0.30
0.43
0.51
0.50
0.51
0.51
0.50
0.50
0.46
0.50
0.45
0.22
0.43
0.27
0.39
0.27
0.19
0.52
0.32
0.19
0.43
0.43
0.27
0.30
0.47
0.49
0.52
0.09
0.50
0.53
0.52
0.09
0.17
0.19
0.25
0.51
0.37
0.17
0.05
0.50
0.44
0.48
0.42
0.05
0.34
0.27
0.21
0.30
0.43
0.20
0.11
0.42
0.44
0.23
0.47

0.357
0.366
0.229
0.248
0.332
0.372
0.367
0.374
0.372
0.363
0.367
0.349
0.366
0.341
0.188
0.332
0.231
0.305
0.226
0.171
0.375
0.264
0.164
0.334
0.328
0.222
0.248
0.352
0.365
0.373
0.083
0.369
0.371
0.375
0.087
0.148
0.171
0.215
0.368
0.296
0.148
0.045
0.367
0.339
0.355
0.323
0.048
0.277
0.233
0.181
0.253
0.328
0.178
0.099
0.325
0.334
0.195
0.351

0.315
0.014*
1.000
1.000

0.002*
0.347
0.324
0.205
0.172
0.085

0.010*
1.000
1.000
0.220
1.000
1.000
0.369
1.000
0.235
1.000
0.563
1.000
1.000
1.000
1.000
1.000

0.042*
0.049*
0.014*
1.000

0.024*
0.358
1.000
0.341

0.024*
1.000
1.000
1.000
1.000
1.000
1.000

   
0.624
0.610
0.321
0.257

   
0.143
0.485
1.000
0.539
1.000
1.000
1.000
0.631
0.120
1.000
0.633

0.003
0.001
0.000
0.000
0.000
0.002
0.002
0.003
0.002
0.002
0.001
0.000
0.000
0.002
0.000
0.000
0.002
0.000
0.002
0.000
0.002
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.001
0.000
0.001
0.003
0.000
0.002
0.001
0.000
0.000
0.000
0.000
0.000
0.000

   
0.002
0.002
0.002
0.002

   
0.002
0.002
0.000
0.002
0.000
0.000
0.000
0.002
0.002
0.000
0.002

-0.333
-0.667
-0.154
-0.185
0.851

-0.285
0.299

-0.315
-0.393
0.576

-0.684
-0.025
-0.135
-0.444
-0.111

-0.077
0.234
0.032
0.442

-0.091
-0.294
-0.214
-0.086
-0.005
0.035

-0.125
0.615

-0.524
0.515

-0.053
1.000

-0.271
-0.207
0.280
1.000

-0.067
-0.091
-0.143
0.015
0.008

-0.067
   

-0.185
-0.192
-0.299
-0.364

   
0.390
0.127

-0.105
0.106
0.035

-0.097
-0.030
-0.143
-0.417
-0.111
0.146

JHU_6.32607610
JHU_6.32608034
JHU_6.32608356
JHU_6.32610682
JHU_6.32628305
JHU_6.32629270
JHU_6.32629370
JHU_6.32629548
JHU_6.32629602
JHU_6.32629617
JHU_6.32629679
JHU_6.32630966
JHU_6.32633225
JHU_6.33032864
JHU_6.33045658
JHU_6.33053788
JHU_6.33089374
kgp13606542
kgp15099441
kgp3038063
kgp451798
kgp9521982
rs1000709
rs1034063
rs1042544
rs1055055
rs1058433
rs1060622
rs1138374
rs12480506
rs12634498
rs13320
rs1584717
rs1617234
rs1633086
rs1671063
rs17064
rs1760921
rs1800462
rs1809627
rs1980889
rs1984661
rs1997719
rs2047709
rs2078402
rs2088335
rs2105992
rs2267647
rs2277624
rs2301763
rs2739765
rs3740066
rs3765070
rs3823193
rs3828570
rs591510
rs6934645
rs7122786

Human
chrom

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7

22
16
10

8
9

20
6

20
1
9

20
3
1
5

13
6

11
7
7

17
22
12

2
3

14
6

17
16
15
19

6
5

10
6

11
4

19
17
1

22

Coordinate

32639834
32640258
32640580
32642906
32660529
32661494
32661594
32661772
32661826
32661841
32661903
32663190
32665449
33065088
33077882
33086012
33121598
95295992
42129132
89553920
72013241
69832577
114475474
3051186
33086680
5546645
93154836
37974746
16260771
160086741
151874041
102335711
28734932
29747985
66504671
87504154
130331348
12747460
29232752
129872147
240419949
193682987
106852518
33007734
50683744
2895089
25197251
15929482
6168985
601532
5899990
32938451
69261743
21094522
17366509
61596942
5335808
42716955

No information

No information
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Supplementary S1. Continued

*indicates significant deviation from HW equilibrium

SNP name n HO HE PIC P-val S.E. FIS Wa and C

20
17
13
13
23
21
17
15
13
17
24
18
18

0.60
0.29
0.46
0.54
0.26
0.14
0.29
0.27
0.54
0.59
0.38
0.39
0.36
0.19

0.49
0.26
0.49
0.41
0.23
0.22
0.40
0.24
0.41
0.47
0.40
0.32
0.34
0.14

0.365
0.219
0.361
0.316
0.201
0.188
0.314
0.204
0.316
0.352
0.317
0.264
0.268
0.092

0.385
1.000
1.000
0.500
1.000
0.232
0.527
1.000
0.502
0.589
1.000
1.000
0.658

0.003
0.000
0.000
0.002
0.000
0.002
0.002
0.000
0.002
0.002
0.000
0.000
0.001

-0.226
-0.143
0.065

-0.333
-0.128
0.341
0.273

-0.120
-0.333
-0.260
0.072

-0.214
-0.037
0.308

rs720853
rs7248564
rs725900
rs729206
rs738527
rs876352
rs880340
rs907100
rs9277361
rs9277542
rs9277561
rs976531

Human
chrom

10
10

6
6
6

21
1

14
6
9

10
2

Coordinate

Average
SD

124648781
133239619
33082268
33087470
33088972
43283415
42414845
20349972
18143724
89284330
99844450
238654938
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