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 A B S T R A C T 
 

In recent years, various research institutions have developed diverse global 

data reanalysis projects. This provides an opportunity to gain long-term of 

meteorological data for local scale. This study aims to select the potential 

predictor of wind fields u and v of the ERA-20C dataset, a reanalysis dataset, 

at 850 mb from seven domains or windows of Asian, Maritime Continent, 

Australian, and Western North Pacific monsoon related physically to rainfall 

anomaly patterns in Indonesia. The vector wind velocity scalar was obtained 

by using a Helmholtz decomposition to separate the total circulation v = (u,v) 

into the divergent component/velocity potential (χ) or Phi and rotational 

component/stream function (ψ) or Psi for obtaining the scalar variable of 

vector wind velocity. The method applied Singular value decomposition (SVD) 

to identify pairs of spatial patterns (expansion coefficients) between the 

predictors of Phi and Psi in seven domains, with rainfall data from 48 stations 

in Java, Sumatra, and Borneo Islands from 1981 to 2010. The results revealed 

that spatial patterns correlations of Java Islands were the highest in the 

Maritime Continent monsoon domain (80o−150o E and 15oS−15o N), while 

Sumatra and Borneo Island were in the Western North Pacific monsoon 

domain (100o–130o E and 5o–15o N) with predictor Psi. The lowest correlation 

for Java, Sumatra, and Borneo was the Australian monsoon domain (110o E–

130o E and 5o S–15o S) with predictor Phi.  In general, spatial pattern correl-

ations of Java Island were higher than others, agreeing with monsoonal 

rainfall type dominantly in the region.  

 
 

K E Y W O R D S  

potential predictor, reanalysis, singular value decomposition, spatial pattern, wind 

velocity   

INTRODUCTION 

The global atmospheric reanalysis system 

involves a prediction model, input observations, and 

assimilation to combine input observations with 

predictions for the short term. These systems provide 

the most accurate global estimation and analysis of 

past atmospheric conditions (SPARC, 2022). Recently, 

national meteorology services and universities, as well 

as national or international research institutes, have 

created different types of global data reanalysis. One 

of these reanalyses is ERA-20C, an ECMWF global 

reanalysis (Poli et al., 2016) that covered the period of 

the twentieth century (1900-2010). To improve the 

model's ability to simulate climate observations in the 

20th century, ERA-20C uses surface pressure and wind 

observations for assimilation and 10 model ensembles 

from ERA-20CM data (Hersbach et al., 2015). It has a 

horizontal resolution of about 125 km (spectral 

truncation T159). 

The availability of long-term global reanalysis  da-
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Figure 1.   .Seven-window domains of Maritime Continent: (1) Maritime Continent Monsoon (MCM) (80o−150o E and 

15oS−15o N), (2) Australian Monsoon Index (AUSMI) (110o–130o E and 5o–15o S),  (3) Webster and Young 

Monsoon Index (WYMI) (40o–110o E and 0o–20o N), (4) Indian Summer Monsoon (ISM) (40o–80o E and 5o–

15o N), (5) Indian Summer Monsoon (ISM) (70o–90o E and 20o–30o N), (6) Western North Pacific Summer 

Monsoon (WNPSM) (100o–130o E and 5o–15o N), and (7) Western North Pacific Summer Monsoon 

(WNPSM) (110o–140o E and 20o–30o N). 

 

-ta gives a prospect of reconstructing long-term local 

scale of meteorological data by conducting 

downscaling techniques (Donat et al., 2013; Jin et al., 

2023). Caillouet, (2019) describe statistical down-

scaling as extracting daily local-scale meteorological 

data from synoptic-scale atmospheric variables. The 

accuracy in selecting predictor variables in synoptic-

scale determines the reliability of prediction or 

reconstuction statistical downscalling models (Mason 

and Baddour, 2008), and the selection of predictor 

domains or grid boxes (Back et al., 2013). 

Indonesia's archipelago has high amounts of 

rainfall, which vary in spatial and temporal distribution 

throughout the year. This location is situated in the 

maritime continent, acting as a significant atmospheric 

heat source and contributing to the Hadley and Walker 

circulation on a planetary scale (Ramage, 1968). 

Indonesia's rainfall was strongly influenced by Asia-

Australian monsoons, subdivided into monsoonal, 

semi-monsoonal, and anti-monsoonal types (Aldrian 

and Susanto, 2003; Hashiguchi et al. 2011; Lee, 2015). 

However, the monsoon patterns in Indonesia are 

complex due to various factors, such as the islands' 

topography and interactions with eastward-

propagating and intra-seasonal oscillations, which 

cause significant differences in local-scale rainfall 

within a range of 50-100 km (Moron et al., 2010). 

Additionally, the inter-annual climate variability in 

Indonesia is influenced by the El Niño-Southern 

Oscillation (ENSO) (Hendon, 2003; Hendrawana et al., 

2019; Hidayat and Andro, 2014). 

This study aims to select the potential predictors 

of wind fields u and v at 850 mb from seven domains 

or windows of Asian and Australian Monsoons, which 

were related physically to rainfall anomaly patterns in 

Indonesia. The previous study (Surmaini et al., 2015; 

Syahputra, 2012) used those windows for the multi-

windows approach in rainfall ensemble prediction for 

Sumatra and Java Regions but did not conduct a 

selection for the best window as the predictor. The 

seven windows were Maritime Continent Monsoon 

(MCM) (Robertson et al., 2011), Australian Monsoon 

Index (AUSMI) (Kajikawa et al., 2010), Webster and 

Young Monsoon Index (WYMI) (Webster and Yang, 

1992), Indian Summer Monsoon (ISM) and Western 

North Pacific Summer Monsoon (WNPSM) (Wang et 

al., 2001) (Figure 1). This study pre-processed the ERA-

20C dataset statistical downscaling analysis to select 

the appropriate window domains for rainfall ensemble 

prediction in Java, Sumatra and Borneo Islands of 

Indonesia. 

RESEARCH METHODS 

Data Source 

The study employed 3-hourly zonal (u) and 

meridional (v) wind of the ERA-20C dataset at 850 mb 

from 1981-2010. The 3-hourly data were averaged 

with daily and monthly data. The stream function (ψ) 

or Psi and velocity potential (χ) or Phi to obtain the 

scalar variable of vector wind velocity. Phi and Psi were 

considered more appropriate for representing flow 

patterns in low latitudes, where geostrophic balance 

breaks down due to the small Coriolis parameter (Cao 

et al., 2022; Li et al., 2006; Palmer, 1952).  

Previous studies (Surmaini et al., 2015; Syahputra, 

2012) had used these predictors for predicting rainfall 

patterns in Indonesia. This research employed data 

obtained from 48 meteorological stations of BMKG 

(Indonesia Agency for Meteorology, Climatology and 

Geophysics) located in Java, Sumatra, and Borneo. 
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Figure 2.   Distribution of rain gauge stations for  

rainfall verification in Java, Sumatra and 

Borneo used in the study. 

Calculation Psi and Phi 

The calculation of Psi and Phi used a decompo- 

sition of Helmholtz, which uniquely splits the total cir-

culation v⃗  = (u, v) into divergent (vorticity free) or χ 

(Phi) and rotational (divergence free) components or 

ψ (Psi) (Dutton, 1976; Hammond and Lewis, 2021). The 

formula of Helmholtz decomposition for horizontal 

wind (Equation 1) and the relation between horizontal 

wind u and v, with ψ and χ (Equation 2 and 3). 

𝒱⃗ = k⃗  x ∇ψ − ∇χ              (1) 

u = −
∂ψ

∂y
−

∂χ

∂x
                   (2) 

v =  
∂ψ

∂x
−

𝜕𝜒

𝜕𝑦
                   (3) 

Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) was a 

mathematical tool used in climatology to establish a 

linear relationship between two datasets, such as 

Global Climate Model (GCM) and meteorological 

station rainfall data. In this study, 14 ensemble 

members of predictors were selected for monthly 

temporal resolution in seven windows. The SVD 

method produced two orthogonal spatial sets of a 

single vector, similar to an eigenvector or Empirical 

Orthogonal Function (EOF), but one for each variable. 

Additionally, it produces a single set of values 

associated with each vector pair, which was analogous 

to eigenvalues. For instance, two matrices, X and Y, 

with dimensions of t x p and t x q, were used for this 

purpose. Björnsson and Venegas (1997) provide more 

details on this topic (Equation 4). 

   X =  (

x11 ⋯ x1p

| ⋱ |
xt1 ⋯ xtp

)       

Y =  (

Y11 ⋯ Y1q

| ⋱ |
Yt1 ⋯ Ytq

)         

       Xt x p were the predictor values at t time in p grids, 

while Yt x q were the values of rainfall at t time in the q 

stations. The covariance matrix (Cxy) was (Björnsson 

and Venegas, 1997) in Equation (5). 

Cxy = ZTS                      (5) 

      X and Y were centralized into Z and S, ZT was the 

transpose matrix of the Z matrix (Equation 6). 

Z =  (

x11 ⋯ x1p

| ⋱ |
xt1 ⋯ xtp

) − (

x̅1 ⋯ x̅p

| ⋱ |
x̅i ⋯ x̅p

)          

S =  (

Y11 ⋯ Y1q

| ⋱ |
Yt1 ⋯ Ytq

) − (

Y̅1 ⋯ Y̅q

| ⋱ |

Y̅i ⋯ Y̅q

) 

with x̅ and y̅ were the average of the i-th column of 

the X and Y matrix for i=1, 2, 3,…, p and for i=1, 2, 3,…, 

q.  

A =  L1x1 + L2x2 + ⋯⋯+ Lpxp = xL 

B =  N1y1 + N2y2 + ⋯⋯+ Nqyq = yN 

       SVD find a linear combination of p predictor 

variables that having maximum covariance value with 

linear combination of q predicted variables. Linear 

combination pairs of A and B were called the 

expansion coefficients which analogous to an 

eigenvector or EOF (Equation 7).  

Cxy = LDNT               (8) 

        Correlation (r) on the most dominant mode 

expansion coefficient was between A and B, ranges 

from 0 (weak) to 1 (strong). Cross-covariance matrix in 

SVD decomposed into two orthogonal spatial pattern 

clusters and pairs with singular values (analogous to 

the eigenvalues). Decomposition of Matrix Cxy 

(Björnsson and Venegas, 1997) were in Equation (8). 

with L was singular matrix with dimension of p x m and 

N was singular matrix m x q dimension (m = min(p,q)). 

SCF =  
λi
2

∑ λi
2m

i=1

                     (9) 

        Matrix D was a non-negative diagonal matrix 

whose elements were λ1>λ2>…>λm. Matrixes L and 

N sequentially can be determined by finding the 

singular vectors of Cxy Cxy
T  and Cxy

T Cxy  i.e. singular 

vectors L1 ,  L2 ,  L3 ,......  Lp  and N1 ,  N2 ,  N3 ,......  Np which 

correspond to the λ1
2>λ2

2>…>λm
2 . The corresponding of 

singular vectors L and N was described by a Square 

covariance fraction (SCF) (Equation 9). 

RESULTS AND DISCUSSION 

Expansion Coefficients Value 

Monthly correlations between expansion coeffi-

cients A and B in the study area and the SCF were  pre-

(4) 

(6) 

(7) 
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Figure 3.  .Correlation expansion coefficient A and B (two orthogonal spatial sets) (left panel) and Square Covariance 

Fraction (SCF) (right panel) for: (a) Java, (b) Sumatra, and (c) Borneo in Singular Value Decomposition (SVD) 

mode.  

sented  in Figure 3. The x-axis on graphs in Figure 3 

were predictors in seven windows (w1 until w7) as seen 

in Figure 1, with parameters Phi (v1) and Psi (v2). In this 

study, the first mode had correlation values ranging 

from 0.45 to 0.83 in Java, 0.36 to 0.72 in Sumatra, and 

0.45 to 0.79 in Borneo. The second mode had 

correlation values ranging from 0.29 to 0.51 in Java, 

0.31 to 0.69 in Sumatra, and 0.32 to 0.59 in Borneo. The 

third mode had correlation values ranging from 0.20 

to 0.57, with the highest value in Java and the lowest 

value in Sumatra. The correlation value between A and 

B indicated the relationship strength of the coupling 

pattern between rainfall and predictors (Psi and Phi). 

Based on the SCF analysis, the three leading 

modes explain almost all the total square covariance 

between the predictors and rainfall in the study area 

(Figure 3). The first mode of all predictors had more 

than 0.95, except for predictors w2v2 and w6v2 in 

Sumatra and Borneo. The second mode SCF of 

predictors in Java was lower than 0.04 (see the second 

axis of the graphs), while in Sumatra, the highest was 

predictor w2v2 (0.47), followed by w6v2 (0.16). In 

addition, predictor w2v2 was the highest value for the 

second SCF of 0.24 in Borneo. The third mode SCF  

values were generally very low, less than 0.03,  

indicated a weak relationship between the predictors
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Figure 4.   - Correlation maps between expansion coefficients A mode 1 of predictor Phi in: (a) window 1, (b) window 

2, (c) window 3, (d) window 4, (e) window 5, (f) window 6, and (g) window 7. 

 

and rainfall for this mode. Overall, the SCF analysis 

suggested that the first and second modes of the 

predictors were the most important for explaining the 

variability in rainfall in the study area. The correlation 

maps indicated how well the information of expansion 

coefficients of predictors Phi and Psi can predict 

rainfall values. The correlation maps between 

expansion coefficients A mode 1 of predictor Phi with 

the values of rainfall at stations (y) or heterogeneous 

correlation map (Björnsson and Venegas, 1997) were 

presented in Figure 4. 

The maps showed higher positive correlations in 

Java, the Southern part of Sumatra and Borneo for 

window 3 to window 7. On the contrary, the correlation 

in Java for window 1 had a higher correlation but in 

negative values, while in the Southern part of Sumatra 

and Borneo was positive. Window 1 or MCM, had a 

significant geographic seasonal variation due to the 

different sizes of islands interspersed around the 

surrounding sea (Chang et al., 2004), resulting in a 

different correlation in each island. The correlation was 

lower for windows 2 than other windows.  

Correlation maps between expansion coefficients 

A of predictor Psi mode 1 with rainfall at stations were 

presented in Figure 5. The negative correlations 

between expansion coefficients A of predictor Psi 

mode 1 and rainfall values suggested that the amount 

of rainfall decreases as the value of A increases. This 

could imply a strong negative relationship between 

the flow patterns of Psi and rainfall in the study area. 

The exception in window 2, where there was a 

positive correlation, could suggested a different  rela-

(a) (b) 

(c) (d) 

(e) (f) 

(g) r correlation: 
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Figure 5.      Correlation maps between expansion coefficients A mode 1 of predictor Psi in: (a) window 1, (b) window 

2, (c) window 3, (d) window 4, (e) window 5, (f) window 6, and (g) window 7. 

 

tionship between Psi and rainfall in that particular 

period or location. The finding by Kajikawa et al., 

(2010) of a significant anti-correlation between AUSMI 

anomalies and Asian monsoon onset date was 

interesting and suggests a potential link between the 

flow patterns in  the study area and the monsoon 

onset. 

Figures 6a and 6b presented correlation maps 

depicted the relationship between expansion coeffi-

cient B of rainfall mode one and predictors (Phi  and 

Psi) across windows 1 to 7. The map in Figure 6a 

revealed negative correlations in northern latitudes, 

including the northern section of window 1 and 

windows 3 to 7, for predictor Phi. However, a positive 

correlation occured in southern latitudes, particularly 

in the southern part of window 1, except for window 2, 

which displays an exception with negative values. In 

contrast, the correlation map in Figure 6b between 

expansion coefficients B of rainfall mode 1 and 

predictor Psi illustrated a positive correlations in 

equatorial regions (0o to 10o N and S).  

In addition, the correlations become negative as 

it moved away from the equator, including in windows 

5, 7, and 3. It was noteworthy that window 2 exhibited 

a different spatial pattern than window 1. Figure 3 

indicated that predictor w1v2 correlated with spatial 

rainfall patterns in Java, while w7v2 and w3v2 had the 

highest correlation in Sumatra. The predictor w7v2 

also had the highest correlation in Borneo. On the 

other hand, predictor w2v1 had the lowest correlation 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
r correlation: 
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Figure 6.   Correlation maps between expansion coefficients B mode 1 of rainfall with predictor Phi (a) and Psi (b) in 

windows 1 to 7. 

 

value for all regions, indicating the weakest relationship 

with rainfall patterns in Java, Sumatra, and Borneo 

Islands.  

Figure A1 presented the time series of expansion 

coefficients A and B in the first SVD mode for predictors 

which had the highest values of correlations in Java, 

Sumatra, and Borneo. Time series were smoothed 13 

month running mean, and amplitudes of A and B were 

normalized by the relevant standard deviation 

(Björnsson and Venegas, 1997). Figure A1 can analyzed 

the dominant pattern of rainfall and predictor Psi. Both 

time series of A and B fluctuated inter-annually for all 

regions. The pattern of both parameters was similar but 

opposite. 

According to the correlation maps presented in 

Figures 4 and 5, the predictor Psi showed higher 

correlations than Phi in Java, Sumatra, and Borneo. This 

was consistent with a previous Syahputra (2012) study, 

which found that Psi 850 mb was a better predictor 

than zonal wind u and Phi at the same altitude when 

using the single best analogue method. The correlation 

maps also revealed that the highest correlations occur 

in regions with a monsoonal rainfall type (Aldrian and 

Susanto, 2003), such as Java, the southern part of 

Sumatra, and Borneo, with predictors from the Asian 

monsoon (windows 1, and 3 up to 7). However, window 

2, or the AUSMI window, exhibits a different pattern. 

This may be due to the dominant influence of the 

Australian monsoon over Asia, resulting in an anti-

correlation with rainy season onset (Kajikawa et al., 

2010). Interestingly, the correlation of predictor Psi in 

window 2 was higher than that of Phi. 

The second mode of SCFs in Sumatra and Borneo 

was higher than in Java, specifically in windows 2 and 6 

of predictor Phi, indicating that the rainfall variability in 

Sumatra and Borneo was higher than in Java (Figure 3). 

This was consistent with the semi-monsoonal rainfall 

types observed in the Northern part of Sumatra and the 

Western and Northern parts of Borneo, which had two 

peak annual rainfall patterns. In contrast, Java had a 

monsoonal type (Salmayenti et al., 2017; Qian et al., 

2010). In a similar study, Safril and Virgianto (2018) also 

utilized SVD analysis to select rainfall predictors for 

Sumatra Island in the maritime continent domain based 

on the rainfall types observed in Sumatra. They found 

that zonal wind 850 mb was closely related to Sumatra's 

monsoon and semi-monsoonal rainfall. 

(a) 

(b) 

r correlation: 
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CONCLUSIONS 

         This study investigates ERA-20C wind field 

Predictors (Phi and Psi) in seven monsoon window 

domains to select the best potential predictor from 

seven monsoon windows. The selection was based on 

spatial pattern correlation A and B because the SCF for 

all windows mostly was high. The predictor Psi in MCM 

(80o−150o E and 15o S−15o N) window was the highest 

for Java, while Sumatra and Borneo were predictor Psi 

of WNPSM (110o–140o E and 20o–30o N).  The lowest 

correlation for all regions was predictor Phi in AUSMI 

(110o–130o E and 5o–15o S) window. SVD analysis in this 

study was a pre-processing step for ensemble rainfall 

prediction using the multi-windows approach to 

quantify the uncertainty. The result of SVD can be used 

to eliminate predictors that had weaker relation to the 

rainfall prediction and to reduce the error from GCM 

predictors. 
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ANNEX 

Figure A1.  Time series of expansion coefficient A and B (two orthogonal spatial sets) mode 1 of predictor (a) 

window 1-Psi in: Java, (b) window 7-Psi in Sumatra, (c) Borneo. 
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