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 A B S T R A C T 

Surface runoff is a primary driving factor for water regulation services on oil 

palm plantations as it determines the hydrological components and other 

biogeochemical process. Therefore, understanding on their interaction and 

contribution within the watershed system is important to support decision-

making system. Here, we applied Soil and Water Assessment Tools (SWAT) 

model to simulate water regulation services for an intermittent micro-

catchment dominated by oil palm plantation in Harapan Landscapes, 

Batanghari Regency, Jambi Province. In this study, we used two different runoff 

curve number (CN) approaches in the SWAT model, namely the soil moisture 

curve number (CN-SM) and the plant evaporation curve number (CN-ET), to 

evaluate their applicability and uncertainty for assessing water regulation 

services. SWAT was automatically calibrated and validated against daily 

observed streamflow data. The results showed that the model performed well 

as indicated by hydrograph visual interpretation and statistical indicators. The 

performance was good for calibration and validation for both approaches with 

high R2 and Nash-Sutcliffe Efficiency (NSE). Also, the uncertainty was 

acceptable with P-factor >70% and R-factor <1. Differences in CN-SM and CN-

ET's conceptual structure have caused variations in the calibrated parameters' 

best-fit value and their sensitivity to streamflow simulations, which implicated 

for other components' output water regulation services. However, CN-ET 

approach was less responsive to area's biophysical conditions for runoff 

generation than CN-SM one.  This implicated that CN-ET generated low soil 

water storage and an overestimated actual evapotranspiration. This modeling 

exercise showed selection of a runoff CN approach by considering biophysical 

characteristics is important for calculating and simulating water balance 

component in such watershed. The accuracy of the simulation will significantly 

influence watershed management recommendations to improve water 

regulation's sustainability.  
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INTRODUCTION 

Harapan Landscape, Batanghari Regency, Jambi 

Province, is one of the lowland landscapes in Sumatra 

island dominated by monoculture plantations of oil 

palm (Elaeis guineensis Jacq.) (Kii et al., 2020). Located 

in humid tropical region with intensive rainfall, high 

runoff associated with oil palm expansion is obvious 

due to a low infiltration rainwater (Hazrina and 

Risdiyanto, 2018; Merten et al., 2016; Tarigan et al., 

2020). Surface runoff is a primary driving factor for 

water regulation services assessments on oil palm 

plantations because it greatly determines the amount 

of rainfall fill aquifers (Baiamonte, 2019; Verma et al., 

2017; Widodo and Dasanto, 2010; Zhang et al., 2019). 

Also, surface runoff process in oil palm plantations, 

even for agricultural land in general, does not only 

determine the amount of streamflow (Chen et al., 2020), 

soil moisture (Liu et al., 2019), and evapotranspiration 

(Tarigan et al., 2020), but also has implications for the 

biogeochemical cycle and nutrient retention (Brito et al., 

2019), water quality (Ba et al., 2020), erosion and 

sediment transport, and crop production (Sun et al., 

2017). 

Before the complex hydrological model was 

developed, according to Li et al., (2018) and Dash et al., 

(2020), previous researches observed the surface runoff 

and the hydrological process independently through 

field measurements. It is also modeled through a 

numerical equation for a single storage layer, such as 

Horton overland flow, Philips’s infiltration, etc. However, 

that model cannot explain the complex spatial and 

temporal interaction between surface runoff and the 

other hydrological process inside the watershed system 

to support decision-making (Dash et al., 2020; June et 

al., 2018). Researchers then developed various 

hydrological models that can visualize the dynamic 

behavior of the hydrological system with simple 

equations to ease computation without reducing its 

physical aspects (Anees et al., 2016), such as Soil and 

Water Assessment Tool (SWAT) model (Arnold et al., 

1998). The hydrological model focuses on simplicity 

and usability, where the causal relationship between 

hydrological input and output in a complex watershed 

system is emphasized to support integrated watershed 

management (Li et al., 2018; Widyastuti and Taufik, 

2019). Hydrological models are increasingly being 

developed and refined as a tool to manage land and 

water resources more effectively. However, because 

different models will replicate the hydrological process 

differently, the selected model must answer the 

research problems effectively and efficiently. 

SWAT model is a physical-based hydrological 

model that is semi-spatially distributed and temporally 

continuous (Arnold et al., 1998). In addition to 

simulating the hydrological process, SWAT model has 

ability to simulate various main processes in the 

watershed ecosystem in the long-term period (Wei et 

al., 2018), such as nutrient cycle, plant growth, and 

sediment transport under land use and climate changes. 

This ability has made SWAT model is widely used as a 

watershed ecosystem management tool (Wang et al., 

2019). The original SWAT model provides two user-

selectable surface runoff generation methods: The 

Green-Ampt infiltration method for sub-daily routing 

and the runoff Curve Number (CN) method for daily 

routing (Neitsch et al., 2015). Runoff CN method was 

developed by USDA Natural Resources Conservation 

Services, previously Soil Conservation Services (SCS), 

and still popularly known as the SCS-CN method 

(Baiamonte, 2019). Runoff CN has become the most 

preferred and widely applied in the most hydrologic 

simulation model because of its simplicity, less 

parameters, stable, and predictable (Kannan et al., 

2008; Verma et al., 2017; Zhang et al., 2019).  

The runoff CN method is an empirical method 

based on a simple conceptual relationship between 

surface runoff, daily rainfall, land use and management, 

and soil type without weakening the physical processes 

between these factors (Hawkins et al., 2019; Karlberg 

and Dile, 2016). This model was developed to provide 

consistent standards for estimating surface runoff over 

a wide range of land uses, land management, and soil 

characteristics. Slope adjustments can also be selected 

to see variations in the curve numbers due to variation 

in slope classes, especially in a steep-slope watershed 

(Ajmal et al., 2020). Since development of SWAT version 

2005 (Neitsch et al., 2015), SWAT provides two 

approaches for calculating the daily CN, soil moisture 

curve number (CN-SM) as an original approach and 

plant evaporation curve number (CN-ET) as a modified 

approach. CN-SM is the most common approach 

besides CN-ET, and several studies prefer to use the 

CN-SM in hydrological modeling compared to the CN-

ET. According to the original CN procedure, the CN-SM 

allows the daily retention parameter (S) to vary with the 

antecedent soil moisture condition (Neitsch et al., 2015). 

On the other hand, (CN-ET) allows the daily retention 

parameter to vary with the accumulated plant 

evapotranspiration in previous days. If the CN-ET is 

used in the simulation, the daily CN value does not 

depend on soil moisture but rather on antecedent 

climatic conditions. 

Tarigan et al., (2020; 2018) have simulated water 

regulation services in tropical lowland areas of Jambi 

Provinces based on SWAT CN-SM. Hardly any research 

have been performed, which  used SWAT CN-ET as a 

comparative method in that area. The default CN 
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method in the SWAT model, CN-SM, may give precise 

outputs for some land biophysical characteristics but it 

may still generate exaggerated or underestimated 

outputs in some extents. The presence of two runoff CN 

on SWAT models also led to the emergence of 

structural uncertainty in the simulation, which was later 

implicated in the model output differences so that it 

requires a thorough consideration of the researcher. 

Therefore, this study seeks to evaluate CN-ET and CN-

SM's application in assessing water regulation services 

in tropical lowland areas dominated by oil palm 

plantations, with a case study of a micro catchment in 

the Harapan Landscape, Batanghari Regency, Jambi 

Province. Daily streamflow results from both 

approaches are calibrated and validated using daily 

streamflow observation data to test CN-ET and CN-SM 

applicability and uncertainty in hydrological simulation 

in the study area. The parameter calibration is carried 

out automatically with the SWAT-CUP (Soil and Water 

Assessment Tools-Calibration Uncertainty Program) 

because apart from performing parameter optimization 

and sensitivity analysis, SWAT-CUP also analyzes the 

level of uncertainty in applying the two methods in the 

study area (Abbaspour, 2015). Thus, the objectives of 

the research are: 

(1) to analyze the sensitivity of CN-ET and CN-SM 

parameters to streamflow output, 

(2) to calibrate, validate, and evaluate the 

structural uncertainty of the CN-SM and CN-ET 

approaches, and 

(3) to evaluate the differences between CN-SM 

and CN-ET in other water regulation services 

assessment than river discharge. 

RESEARCH METHODS 

Study Site 

The study area on this research was a micro 

catchment where the entire area is a mature oil palm 

plantation planted in 2002 with a current plant height 

of approximately 14 meters. The area is 114.4 hectares, 

geographically located at 1° 41' 11.238" – 1° 42' 14.137" 

S and longitude 103° 23' 18.420" - 103° 23' 50.208" E, 

and has an elevation range of 24-81 meters. The micro 

catchment is part of the Batanghari watershed, which is 

administratively located in Bajubang District, Batang-

hari Regency, Jambi Province. River networks are 

categorized as intermittent rivers, where the streamflow 

only occurs at certain times after rains, and the  stream-

 

Figure 1. Study area: micro catchment located in Bajubang District, Batanghari Regency, Jambi Province
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flow approaches zero if there is no rain. The average 

annual air temperature is around 26.4° C, and the 

annual rainfall is 3300 mm. The study area has only one 

type of soil, Acrisol, based on the FAO system, or 

Association of Typic Dystrudepts and Typic Hapludox 

based on the soil mapping unit system. Micro 

catchment with a highly controlled environment of one 

soil type and one land cover type make water 

regulation services estimation from the SCS-CN 

method easier to examine than highly heterogeneous 

areas.  

A quality-controlled automatic water level 

recorder (AWLR) was installed at the outlet basin, and a 

meteorological station was installed in the center of the 

micro catchment to support the SWAT model si-

mulation. The Collaborative Research Center's (CRC-

990) meteorological observation station is designed to 

take representative biophysical measurements on oil 

palm plantation on very detailed temporal scales 

ranging from hourly to daily. Meteorological measure-

ments were carried out from March 2014 to November 

2019 for model simulation, while river discharge 

measurements were carried out from September 2017 

to February 2018 for model calibration and validation. 

Because there are missing observation data at times, we 

also use Climate Forecast System Reanalysis (CFSR) 

data from the SWAT Global Weather Generator 

Database to fill in missing data during the simulation. 

Water Regulation Services Simulation Using Soil 

and Water Assessment Tools (SWAT) 

Soil and Water Assessment Tools (SWAT) is a 

computationally efficient physical model developed by 

J. G. Arnold (Arnold et al., 1998) for the USDA 

Agriculture Research Service (USDA-ARS) from several 

ARS (Agricultural Research Service) models (Neitsch et 

al., 2015). SWAT works at a watershed scale and allows 

several different physical processes to be simulated in 

a watershed for long-term periods, such as the 

hydrological cycle, plant growth, pesticide cycle, and 

nutrient cycle (Neitsch et al., 2015; Zhang et al., 2019). 

SWAT is a semi-distributed model that divides a 

watershed into several sub-basin and then divides each 

sub-basin into several hydrological response units 

(HRUs). The sub-basin and HRU are used to explain the 

spatial heterogeneity of the physical processes in the 

watershed system for each combination of land use 

features, vegetation, soil, and topography (Zhang et al., 

2019). Also, sub-basin and HRU help increase 

simulations' accuracy because heterogeneity in land 

use, soil types, and topography have different impacts 

on physical processes (Wang et al., 2019) 

The output of the SWAT model can help 

stakeholders in assessing the impact of land manage-

ment on water quantity and quality, nutrient leaching, 

and sediment transport, especially for complex 

watersheds with features that vary spatially and 

temporally but have limited data availability due to lack 

of monitoring data (Arnold et al., 1998; Dash et al., 

2020). No matter what type of problem is studied with 

SWAT, hydrological processes are the driving force 

behind everything in the watershed system. The main 

hydrological processes simulated with the SWAT model 

include evapo-transpiration, surface flow, lateral flow, 

and baseflow, calculated based on the water balance 

equation (Zhang et al., 2019). 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑃 − 𝑄𝑆𝑅𝑂 − 𝐸𝑎 − 𝑄𝑆𝑆𝑅𝑂 − 𝑄𝐵𝑅𝑂
𝑡
𝑖=1   (1) 

where SWt is the final condition of soil moisture, SW0 is 

the initial condition of soil moisture, P is precipitation, 

QSRO is surface runoff, Ea is actual evapotranspiration, 

QSSRO is a lateral flow, QBFO is base flow, t is time in days, 

all units are in the metric system (mm). 

Pre-processing, model running, analysis of 

sensitivity, and accuracy and uncertainty test are the 

four stages of the SWAT simulation. Spatial data 

needed to run SWAT model are digital elevation model 

(DEM) from Geospatial Information Agency which is 

available with a spatial resolution of 8 meters, land 

cover derived from Landsat-8 OLI interpretation with 30 

meters spatial resolution, soil map with scale 1: 50,000 

from Indonesian Center for Agricultural Land Resources 

Research and Development, land cover and soil physics 

attribute from the field survey, and daily meteorological 

observation data.  

a. Pre-processing 

Micro catchment and stream network 

delineation from DEM data and HRU definition from 

land cover, soil type, and slope data are all part of the 

pre-processing stage. A threshold of 100 hectares area 

was applied when extracting the watershed boundary 

and river network from the DEM data, resulting in a 1.14 

km2 micro catchment divided into five sub-watersheds. 

The HRU is defined from one land cover type, one soil 

type, and five slope classes, resulting in a total of 22 

HRUs for the entire micro catchment or 1-5 HRU(s) in 

each sub-watershed depending on slope heterogeneity. 

Pre-processing also includes database input, including 

land cover and management (.mgt), soil-water pro-

perties (.sol), daily precipitation (.pcp), and daily po-

tential evapotranspiration (.pet). Soil-water properties 

required for the SWAT simulation include bulk density, 

porosity, permeability, texture, organic matter content, 

and available water content. The PET method in the 

SWAT model chosen in this study is Penman-Monteith, 

which is calculated based on the equation below: 

𝑃𝐸𝑇 =  
1000×(∆×(𝑅𝑛−𝐺)+(𝜌𝑎×𝑐𝑝×

(𝑒𝑠−𝑒𝑎)

𝑟𝑎
))

(∆+(𝛾×(1+
𝑟𝑐
𝑟𝑎

)))×𝜌𝑊×𝐿

  (2) 
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where PET is daily potential evapotranspiration (mm), 

1000 is conversion meter to the millimeter, Δ is the 

slope of the water vapor pressure to temperature 

(kPa/°C), Rn is daily net radiation (MJ/m2), G is daily 

ground heat flux (MJ/m2), γ is psychrometric constant 

(kPa/°C), ρa is the air density (kg/m3), ρw is water density 

(kg/m3), L is the latent heat of water vaporization 

(MJ/kg), rc is canopy resistance (s/m), ra is aerodynamic 

resistance (s/m), es is saturation vapor pressure (kPa), ea 

is actual vapor pressure (kPa), and cp is the specific heat 

at constant pressure (MJ/kg °C). Although observation 

weather data is available to calculate PET manually, the 

PET calculation in the above equation is executed by 

the SWAT model structure, which requires input data in 

the form of maximum and minimum air temperature 

(.tmp), solar radiation (.slr), wind speed (.wnd), and 

relative humidity (.rhu). 

b. SWAT Simulation using CN-SM and CN-ET 

Approach 

Hydrological modeling using SWAT goes 

through two processes: simulation of the hydrology 

process of each HRU and flow routing from HRU to 

sub-basin outlet through the stream network (Gao et 

al., 2018). This study aims to compare the two SCS-CN 

approaches so that the rainfall-runoff transformation in 

each HRU is modeled by the SCS-CN method (Eq. 3). 

The SCS-CN method is a simple rainfall-runoff trans-

formation method that only requires daily rainfall data 

(P) and watershed CN data but powerful to estimate 

excess rainfall as surface runoff (Hawkins et al., 2019).  

𝑄𝑆𝑅𝑂 =
(𝑃−𝐼𝑎)

(𝑃−𝐼𝑎+𝑆)

2

  (3) 

where QSRO is daily surface runoff accumulation (mm), 

P is daily precipitation (mm), S is retention parameter 

(mm), and Ia is an initial abstraction (mm). The three 

main processes considered in initial abstraction are 

rainfall interception, storage depression, and infiltration 

before the surface runoff. Initial abstraction is generally 

assumed 0.2 of the retention parameter, and QSRO only 

occurs when P > Ia (QSRO = 0 if P ≤ Ia). The retention 

parameter (S) can be approx-imated as a function of 

the CN, according to Eq 4. The CN value varies spatially 

due to differences in land cover, soil type, and land 

management. 

𝑆 = 254 (
100

𝐶𝑁
− 1)  (4) 

In a temporally continuous model, such as SWAT, the 

CN value will also vary temporally by considering the 

antecedent moisture condition (AMC). SCS defines 

three AMC, CN1-dry (wilting point), CN2-average 

moisture, and CN3-wet (field capacity). The CN2 value 

for oil palm land with Acrisol soil type (HSG C-low 

infiltration rate then thoroughly wetted) was taken from 

the reference table, while CN1 and CN3 were calculated 

from CN2, Eq. 5 for CN1 and Eq. 6 for CN3 (Neitsch et 

al., 2015). 

𝐶𝑁1 = 𝐶𝑁2 −
20×(100−𝐶𝑁2)

(100−𝐶𝑁2+exp [2.533−0.0636×(100−𝐶𝑁2)])
  (5) 

𝐶𝑁3 = 𝐶𝑁2 × exp [0.00673 × (100 − 𝐶𝑁2)]  (6) 

If the slope factor is adjusted in the CN calculation 

(Ajmal et al., 2020), the CN2 value will also vary spatially 

according to the slope variations based on Eq. 7 

(Neitsch et al., 2015). The CN2 value given by the 

reference table is the default CN2 value at a 5% slope. 

𝐶𝑁2𝑠 = (
(𝐶𝑁3−𝐶𝑁2)

3
× [1 − 2 exp(−13.86 × 𝑠𝑙𝑜𝑝𝑒)]) +

𝐶𝑁2  (7) 

The SWAT model used in this study, the 2012 

SWAT version, has two approaches in calculating the 

temporal variation of retention parameters, CN-SM and 

CN-ET. CN-SM is the original procedure in the SCS-CN 

method and has been used in several hydrological 

models for long-term simulations. If CN-SM is selected, 

the combination of CN and soil moisture (SM) is used 

to estimate surface runoff from rainfall so that the daily 

retention parameter value will vary with daily CN and 

SM variations. 

𝑆 = 𝑆𝑚𝑎𝑥 × (1 −
𝑆𝑊

[𝑆𝑊+exp (𝑤1−𝑤2×𝑆𝑊)]
)  (8) 

where S is the daily retention parameter (mm), Smax is 

the maximum retention parameter that derived from Eq. 

4 using CN1 (mm), SM is soil moisture excluding the 

amount of water retained at the wilting point (mm H2O), 

w1 is the first shape coefficient, and w2 is second shape 

coefficient. The first and second shape coefficient is a 

function of the soil moisture in the field capacity (mm 

H2O), soil moisture at saturated condition (mm H2O), 

retention parameters at CN3 condition (S3), retention 

parameters at CN1 condition (Smax), and retention 

parameters at value CN of 99 (S = 2.54 mm) (Neitsch et 

al., 2015). 

On the other hand, if CN-ET is chosen for 

calculation, the retention parameter value is a function 

of PET so that the value does not depend on SM but 

depends on previous climatic conditions. This approach 

is highly dependent on PET calculations, so the choice 

of the PET method, whether Penman-Monteith, 

Thornthwaite, or so on, will affect the estimation of 

surface runoff (Kannan et al., 2008). CN-ET is designed 

to deplete S values faster when the soil is saturated but 

slower when it is in dry condition. During rain, the 

retention parameter is calculated as the sum of the 

previous retention parameters value (Sprev) and the 

current PET that corrected by Sprev, depletion coefficient 

(cncoef), and Smax, and reduced by infiltrated rainfall (P-

QSRO). The initial retention parameter value at the first 
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time of measurement (there is no Sprev value) is given 

0.9 × Smax. 

𝑆 = 𝑆𝑝𝑟𝑒𝑣 + (exp (
−𝑐𝑛𝑐𝑜𝑒𝑓×𝑆𝑝𝑟𝑒𝑣

𝑆𝑚𝑎𝑥
)) − (𝑃 − 𝑄𝑆𝑅𝑂)  (9) 

c. Sensitivity Analysis 

Sensitivity analysis is an analysis conducted to 

determine the model output's response in input 

parameters changes for a particular area. The sensitivity 

analysis is grouped into local sensitivity, and global 

sensitivity approaches. The local sensitivity approach 

determines the output response to variations in one 

input parameter value where the other parameters' 

value is considered constant. Therefore, this approach 

does not pay attention to the interaction between input 

parameters in estimating output. On the other hand, 

the global sensitivity approach explores the entire input 

parameter range and then varied simultaneously to 

investigate the output responses on parameter 

interaction. Input-output pairs are sampled using the 

Latin Hypercube Sampling (LHS) technique to map their 

interaction and measure the uncertainty of output 

caused by each parameter combination. Then, to 

determine whether a parameter is significantly sensitive 

or not for a particular region, t-test statistics are used 

to identify each parameter's relative significance to the 

output. 

d. Calibration, Validation, and Uncertainty Test 

Simulations were carried out from 2014 to 

2019, wherein the first-year simulation, 2014, was used 

for warming up the model. However, climate data is 

missing for one year, from August 2016 to July 2017, so 

we used weather generator (WGN) data to generate the 

climate data. The weather generator database is 

obtained from the Climate Forecast System Reanalysis 

(CFSR) and can be downloaded at swat.tamu.edu/data. 

Like other studies, the parameter calibration and 

validation in this study were based on streamflow 

simulations. Utilization of soil moisture or actual 

evapotranspiration, which is part of water regulation 

services, is rarely used for calibration and validation 

(Karlberg and Dile, 2016). It is because streamflow 

tends to be easily measured directly, more cost-

effective, and easier to obtain temporal data than soil 

moisture and actual evapotranspiration measurement. 

Daily observation streamflow data from 28 September 

2017 to 25 February 2018 (150 days) were used for the 

calibration and validation process. The first 75 

streamflow data were used for the calibration process, 

and the last 75 data were used for validation. Compared 

to manual calibration, which is time-consuming and 

fails to identify parameter sensitivity, this study uses 

automatic calibration based on the Sequential 

Uncertainty Fitting-2 (SUFI-2) algorithm using SWAT-

CUP software (Abbaspour, 2015).  

Based on the literature review, 21 parameters 

and their respective ranges were selected for model 

calibration to capture the main hydrological processes. 

The 20 parameters are calibrated on the CN-SM 

approaches, CN2 (curve number in average moisture 

conditions), SOL_K (soil permeability), SOL_BD (bulk 

density), SOL_AWC (available water content), SOL_CBN 

(soil organic matter content), OV_N (manning overland 

flow), CH_N2 (manning coefficient of the main channel), 

CH_K2 (hydraulic conductivity of the main channel), 

CANMX (canopy storage maximum), LAT_TTIME (lateral 

flow travel time), ALPHA_BF (baseflow recession 

constant), GWQMN (water level threshold for base 

flow), REVAPMN (water level threshold for "revap"), 

GW_DELAY (delay time for aquifer recharge), ESCO (soil 

evaporation compensation coefficient), and EPCO 

(plant uptake compensation factor), ALPHA_BNK (bank 

flow recession constant), SOL_Z (soil depth), RCHRG_DP 

(percolation coefficient), and CH_N1 (manning 

coefficient of the tributary channel). The same 

parameters are used for the CN-ET calibration; also, 

CN-ET adds CNCOEF (CN depletion coefficient) to be 

calibrated. 

To assess the model performance, the model is 

statistically measured based on NSE (Nash-Sutcliffe 

Efficiency) and R2. NSE is a statistical indicator that has 

been widely used so far for hydrological calibration and 

validation. NSE value ranges from -∞, which indicates 

the model is inaccurate, to 1, which indicates that the 

model is very accurate.  

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

]  (10) 

where Yobs is observation data, Ysim is simulation data, 

and Ymean is the average observation data. Other 

statistical criteria used was the coefficient of 

determination (R2). R2 value ranges from 0, indicating 

that the model is inaccurate to 1, which indicates that 

the model is very accurate. 

𝑅2 = [
∑ (𝑂𝑏𝑠𝑖−𝑂𝑏𝑠̅̅ ̅̅ ̅̅ )(𝑆𝑖𝑚𝑖−𝑆𝑖𝑚̅̅ ̅̅ ̅̅ )𝑛

𝑖=1

√∑ (𝑂𝑏𝑠𝑖−𝑂𝑏𝑠̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1 √∑ (𝑆𝑖𝑚𝑖−𝑆𝑖𝑚̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1

]

2

 (11) 

where Obs is observed data, and Sim is simulated data. 

There are no absolute criteria for assessing a 

hydrological model's performance outlined in the 

literatures. However, some criteria are suggested 

including the NSE criteria proposed by Moriasi et al., 

(2007) and the R2 criteria by Ayele et al., (2017). 
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Table 1. The statistical criteria for model performance. 

NSE Value 

 (Moriasi et al., 

2007) 

R2 Value 

(Ayele et al., 

2017) 

Criteria 

0.75 < NSE < 1.00 0.7 < R2 < 1 Very good 

0.65 < NSE < 0.75 0.6 < R2 < 0.7 Good 

0.5 < NSE < 0.65 0.5 < R2 < 0.6 Satisfactory 

NSE < 0.5 R2 < 0.5 Less Satisfactory 

Comparison of CN-ET and CN-SM only using 

R2 and NSE was generally insufficient to measure struc-

tural uncertainty in the model. Therefore, the SUFI-2 

algorithm in SWAT-CUP introduces the other statistical 

indicators to investigate the structural un-certainty 

associated with model simulation. The uncertainty of 

the calibration process is measured by the P-factor, 

which is the percentage of observed data that falls 

within the 95% prediction uncertainty between the 2.5 

and 97.5 percentile (95PPU), and the R-factor, which 

indicates the mean thickness of 95PPU divided by the 

standard deviation of the observed data. 

RESULTS AND DISCUSSIONS 

Sensitivity Analysis 

Sensitive parameters were defined as para-

meters that can affect the simulation performance, and 

their changes can significantly change the model 

output. On the other hand, changes in less sensitive 

parameters do not cause significant changes in the 

model output. Analysis of sensitivity is necessary be-

cause it provides information on which hydrological 

processes are most important in the study area and 

helps reduce the number of parameters in future stu-

dies by eliminating parameters identified as insensitive 

(Abbaspour et al., 2018). Table 2 provides global 

sensitivity rankings for CN-SM and CN-ET, where the 

first rank is the most sensitive parameter, and the last 

rank is the least sensitive parameter. The sensitivity 

analysis results in this study, especially for CN-SM, are 

different from Tarigan et al., (2020; 2018), although 

research is carried out in the same landscape and 

provided similar outputs. Because SWAT has a complex 

structure, various possibilities and differences in 

parameter values and sensitivity will appear in the 

simulation to produce the similar result. The difference 

in sensitivity analysis is based on three things: the 

difference in location, the difference in the range of 

parameter values, and the difference in the number of 

calibrated parameters. As a part of the same macro 

watershed system, each sub-basin or micro catchment 

has different characteristics, so that the parameter 

sensitivity will vary according to these characteristics. 

Furthermore, the differences in the number of 

parameters and their upper-lower bound ranges 

selected in the calibration process also affect the 

sensitivity analysis. Therefore, we cannot directly apply 

sensitivity analysis results for one case study to another 

case study.

Table 2. The rank of the most sensitive parameter to least sensitive obtained during sensitivity analysis. 

CN-SM CN-ET 

Rank Parameter t-test p-value Rank Parameter t-test p-value 

1 CN2a 44.538 0.000** 1 CN2 a 24.840 0.000** 

2 ALPHA_BNK a 26.301 0.000** 2 ALPHA_BNK a 18.010 0.000** 

3 CH_K2 a -21.523 0.000** 3 CH_K2 a -15.372 0.000** 

4 SOL_Z a 8.233 0.000** 4 ESCO a -14.833 0.000** 

5 SOL_BD -7.335 0.000** 5 SOL_Z a 11.055 0.000** 

6 ESCO a 6.011 0.000** 6 CNCOEF 10.964 0.000** 

7 RCHRG_DP a 4.852 0.000** 7 CH_N2 a -3.603 0.000** 

8 GWQMN -3.799 0.000** 8 RCHRG_DP a 2.702 0.007** 

9 CH_N2 a -3.755 0.000** 9 SOL_AWC 2.634 0.009** 

10 OV_N -1.633 0.103 10 GWQMN -2.598 0.010 

11 SOL_AWC -1.544 0.123 11 CANMX -2.263 0.024 

12 EPCO -1.362 0.174 12 SOL_BD -1.497 0.135 

13 GW_DELAY -1.249 0.212 13 SOL_K -1.376 0.169 

14 ALPHA_BF 1.227 0.220 14 GW_DELAY -1.101 0.271 

15 LAT_TTIME -1.178 0.239 15 SOL_CBN 1.005 0.315 

16 CANMX -0.977 0.329 16 OV_N -0.675 0.500 

17 SOL_K -0.551 0.582 17 CH_N1 0.615 0.539 

18 REVAPMN -0.269 0.788 18 LAT_TTIME 0.404 0.686 

19 SOL_CBN -0.233 0.816 19 ALPHA_BF 0.293 0.769 

20 CH_N1 0.023 0.982 20 EPCO -0.236 0.813 

    21 REVAPMN -0.018 0.986 

Note: a parameters are sensitive in both approaches 

** significant in 99% confidence interval (p-value < 0,01)
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The SUFI-2 algorithm uses the Latin Hypercube 

Sampling (LHS) on global sensitivity analysis to 

determine which parameters are the most sensitive and 

less sensitive to the model's output in the study area 

during the parameter estimation process. Out of the 20 

calibrated parameters for CN-SM and 21 parameters 

for CN-ET, nine parameters were sensitive for CN-SM 

and CN-ET, respectively, at the 99% significance level. 

CN2, ALPHA_BNK, CH_K2, ESCO, SOL_Z, CH_N2, and 

RCHRG_DP are seven sensitive parameters for both 

approaches, indicated by p-value <0.01 and | t-test | > 

tα = 99%, df. SOL_BD and GWQMN is a sensitive 

parameter for CN-SM but less sensitive for CN-ET. 

Besides that, SOL_AWC are the sensitive parameters for 

CN-ET but less sensitive for CN-SM. CNCOEF, which is 

the only parameter in CN-ET, is also sensitive to the CN-

ET output. The remaining parameters are less sensitive, 

such as ALPHA_BF in either CN-ET or CN-SM, a sensitive 

parameter often found in the other studies but less 

sensitive in this study. 

The results showed that the parameters equally 

sensitive for CN-ET and CN-SM have their respective 

essential roles in determining the streamflow output. 

The parameters rank in Table 2 indicates that CN2 is the 

most sensitive parameter for CN-ET and CN-SM, as 

evidenced by the highest absolute t-test. It means that 

surface runoff generation is the primary hydrological 

process in the study area. It implies that streamflow 

variations are strongly influenced by the curve number 

justification as the main parameter in generating 

surface runoff that dominates streamflow. Various 

studies have shown that CN2 is the most sensitive 

parameter in surface runoff generation for the SCS-CN 

method. Theoretically, CN2 has a range of 0-100, but in 

practice, CN2 has a range of 25-98, where the greater 

the value of CN2 implies an increase in surface runoff. 

It should also be noticed that CN2 is not the only 

sensitive parameter regarding surface runoff for CN-ET, 

but that CNCOEF also contributes substantially to 

surface runoff. CNCOEF has a range of 0-2, but a range 

of 0.5-1.5 is sufficient to capture most of the watershed 

surface runoff trend. As with CN2, the increase in 

CNCOEF has implications for increased surface runoff. 

Three parameters related to flow routing, 

ALPHA_BNK, CH_N2, and CH_K2, are included in the 

streamflow's sensitive parameters. Sensitive CH_K2 

shows that the amount of streamflow is influenced by 

river-groundwater interaction in two directions. The 

river receives water from the groundwater in the high 

groundwater level (rainy season) and loses water to the 

groundwater through transmission loss in the low 

groundwater level (dry season). This interaction is 

closely related to the magnitude of channel hydraulic 

conductivity (CH_K2) in the layer between rivers and 

groundwater. Furthermore, two-way interaction mainly 

occurs in intermittent rivers, and that reason causes 

CH_N2 to be a sensitive parameter in the study area. 

Sensitive parameters also occur in CH_N2, where based 

on Manning's equation, streamflow velocity is a 

function of the hydraulic radius, river slope, and 

riverbed roughness expressed by the manning 

coefficient (CH_N2). The higher CH_N2 value indicates 

a very rough riverbed and implies lower streamflow, 

vice versa. The sensitivity of ALPHA_BNK shows that the 

volume of water from bank storage also contributes 

significantly to streamflow. Riverbank storage is volume 

water stored at the riverbed or riverbank during high 

groundwater level periods and then returned to the 

river during low groundwater level periods. This 

riverbank storage will dominate the intermittent 

streamflow during the dry season, in contrast to the 

permanent river dominated by baseflow. The increase 

in ALPHA_BNK has implications in increasing water 

volume added from bank storage into rivers (Neitsch et 

al., 2015). 

Three other parameters that are equally 

sensitive for CN-ET and CM are SOL_Z, ESCO, and 

RCHRG_DP. SOL_Z or soil depth from the surface to the 

parent material layer, with SOL_BD (in CN-SM) and 

SOL_AWC (in CN-SM), implies soil water dynamics and 

runoff distribution to streamflow. Deep soils (higher 

SOL_Z) imply higher soil water storage than shallow soil 

(lower SOL_Z) though it is in the same %v/v soil 

moisture condition. ESCO is a parameter that affects 

the runoff component by controlling the range of soil 

depth to meet soil evaporation demand. ESCO has a 

range of 0-1, where the decrease in ESCO allows the 

deeper soil layers to compensate for water deficit in the 

topsoil through the effect of capillary water movement. 

The lower the ESCO value leads to higher soil 

evapotranspiration and vice versa. The last sensitive 

parameter is RCHRG_DP, the fraction of percolation 

from the root zone to fill deep aquifers. RCHRG DP has 

a range of 0 to 1, and lowering it reduces the fraction 

of percolation that fills deep aquifers. Percolated soil 

water replenishes more shallow aquifers in this 

situation, implying an increase in baseflow (Zanin et al., 

2018). 

Calibration and Validation using Streamflow Data 

The objectives to be solved, the available input 

data, the complexity of the model, and the reliability 

and uncertainty of the model are things that need to be 

considered in choosing a hydrological model. Some 

structural uncertainties affect the output value in a 

SWAT simulation: conceptual model's simplification, 

input data variation, and parameter values justification 

(Abbaspour et al., 2018). The parameter uncertainty can 



Agromet 35 (2): 73-88, 2021 

81 

Table 3. Performance of the CN-SM and CN-ET calibration and validation. 

Criteria 
Calibration Validation 

P-Factora R-Factora NSEb R-sqb P-Factora R-Factora NSEb R-sqb 

CN-SM 73%## 0.60## 0.78**** 0.80**** 83%## 0.65## 0.79**** 0.81**** 

CN-ET 75%## 0.63## 0.80**** 0.83**** 86%## 0.68## 0.67*** 0.69*** 

Note: best values are presented in bold 
a ## acceptable, # not acceptable 
b **** very good, *** good, ** satisfactory, * less satisfactory

be in the form of (1) the same parameters combination 

in different approaches that may have different outputs, 

and (2) different parameters combination in the same 

approach can produce the same output. The para-

meters uncertainty arises because some of these para-

meters are difficult to measure so that it is difficult to 

get the absolute value. Therefore, automatic calibration 

with the SUFI-2 algorithm aims to minimize this un-

certainty, where manual calibration cannot resolve it. As 

a stochastic approach, the SUFI-2 algorithm expresses 

the parameter uncertainty as a distribution, where the 

distribution will result in a very variable output prob-

ability (Abbaspour, 2015). SWAT simulation is defined 

as calibrated simulation when the best simulation from 

several iterations also has more than some percentage 

observation data enveloped by 95PPU apart from 

having a significant value of R2 or NSE. Besides that, the 

mean distance between the lowest and highest 95PPU 

bound is less than the observation data's standard 

deviation. 

According to Abbaspour (2015) the recom-

mended 95PPU (P-factor) is more than 70%, and the R-

factor less than 1. It will be better if the P-factor close 

to 100% and the R-factor close to 0. However, to 

achieve a high P-factor, it is necessary to sacrifice the 

R-factor value and vice versa. Then, the best simulation 

is defined as a simulation with a balanced P-factor and 

R-factor value when it achieves the highest NSE or R2 

values. According to the 95PPU plot interpretation, the 

uncertainties that arise during CN-SM and CN-ET 

calibration are considered acceptable, as indicated by 

the P-factor >70% and R-factor < 1. It means that more  

 

Figure 2. Calibrated and validated streamflow for (a) CN-ET approach and (b) CN-SM approach
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Figure 3. (a) CN-SM and CN-ET streamflow output during the 2015-2019 simulation period, (b) 

zoomed in for the 2015-2016 period (before missing data), (c) zoomed in for the 2017-2019 

period (after missing data)

than 105 out of 150 observed streamflow data are in 

the 95PPU range. Although CN-ET has a slightly higher 

P-Factor than CN-SM, a narrower 95PPU range (R-

Factor) was obtained for CN-SM. In the same lower and 

upper bound ranges (Table 4), various combinations of 

CN-SM parameters during Latin Hypercube sampling 

result in less spread output, or the upper and lower 

95PPU ranges are not as scattered as CN-ET. So, CN-

SM has good consistency in capturing parameters 

uncertainty than CN-ET even though some obser-

vational data cannot be captured in that parameter 

range. This uncertainty test is carried out with many 

iterations; hence, the simulation uncertainty is not due 

to inadequate calibration but appears from the 

structural uncertainty behind CN-SM and CN-ET 

conceptual model to capture hydrological process 

dynamics (Zhang et al., 2019). 

Aside from showing the uncertainty indicators, 

Table 3 also shows the statistical indicators commonly 

used to evaluate the model's reliability (NSE and R2). 

The CN-SM and CN-ET performance reliability for 

estimating water regulation services in monoculture oil 

palm plantations was assessed based on calibrated and 

validated simulation results using daily observation 

streamflow data recorded by Automatic Water Level 

Recorder (AWLR). During the calibration period, CN-SM 

and CN-ET are equally reliable in streamflow simulation, 

characterized by the NSE value > 0.75 (Moriasi et al., 

2007) and R2 > 0.70 (Ayele et al., 2017). In this 

calibration period, CN-ET's performance higher than 

CN-SM even though it was in the same category. In 

contrast, CN-SM R2 and NSE still showed excellent 

category during the validation period; however, CN-ET 
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Table 4. Calibrated parameters with their range and best-fit values. 

Categories Parametersa 
Rangeb CN-SM CN-ET 

LB UB Best fit Initc Newd Best fit Initc Newd 

Evapotranspiration 

v_ESCO 0 1 0.949   0.255   

v_EPCO 0 1 0.667   0.471   

v_CANMX 0 10 2.45   7.79   

Surface runoff for oil 

palm with HSG C 

r_CN2 -0.25 0.25 0.2325 77 94.9 0.2275 77 94.5 

r_OV_N -0.2 0.2 -0.11 0.14 0.126 0.007 0.14 0.141 

v_CNCOEF 0 1 -   1.106   

Soil characteristic for 

Acrisol with oil palm 

plantation 

r_SOL_Z -0.9 0.9 0.184 1000 1184.4 -0.626 1000 374 

r_SOL_K -0.2 0.2 0.044 75 78.33 -0.0316 76.7 74.3 

r_SOL_AWC -0.2 0.2 -0.198 0.094 0.0754 -0.153 0.094 0.0796 

r_SOL_CBN -0.2 0.2 -0.117 0.51 0.45 0.1572 0.51 0.59 

r_SOL_BD -0.2 0.2 0.188 1.38 1.64 -0.187 1.38 1.122 

Lateral flow v_LAT_TTIME 0 180 57   68.94   

Groundwater v_ALPHA_BF 0 1 0.981   0.681   

 v_GWQMN 0 5000 495   2545   

 v_REVAPMN 0 500 30.5   362.5   

 v_GW_DELAY 0 300 147.9   192.3   

 v_RCHRG_DP 0 1 0.925   0.953   

Routing v_CH_N1 0 0.3 0.2625   0.2643   

 v_CH_N2 0 0.3 0.061   0.187   

 v_ALPHA_BNK 0 1 0.667   0.731   

 V_CH_K2 0 500 5.5   26.5   

Note: a v: replace the initial value with the best fit value, r: multiply the initial value with the (1 + best fit value) 
b LB: lower bound, UB: upper bound 
c init: initial value before multiplying with best-fit parameter 
dnew: new value after multiplying with best-fit parameter 

R2 < 0.70 and NSE < 0.75, indicating CN-ET perform-

ance was slightly worse. Regardless of using statistical 

indicators, evaluation of the CN-ET and CN-SM appro-

aches was also carried out by hydrograph inter-

pretation. Com-parison between observed and the best 

streamflow simulation during the calibration and vali-

dation period for each CN-ET and CN-SM with its 

uncertainty (95PPU) is shown in Figure 2.  

The hydrograph in Figure 2 shows that both 

CN-ET and CN-SM can simulate the temporal 

streamflow dynamics well. The original SCS-CN method, 

CN-SM, which was developed explicitly for surface 

runoff generation in micro watersheds dominated by 

agri-culture (Soulis, 2021), performed well in the study 

area. CN-SM has also been shown to be reliable in 

predicting peak runoff (Cheng et al., 2016), and the reli-

ability of CN-SM for a similar region was also demons-

trated by Tarigan et al., (2020; 2018). The mo- dified 

SCS-CN, CN-ET, could also perform well in the study 

area. A comparison of daily CN-ET and CN-SM  stream-

flow during the 2015-2019 simulation period in Figure 

3 shown that both outputs are almost identical with an 

R2 of 0.91. Based on Kannan et al., (2008), the excellent 

performance of CN-ET in the surface runoff simulation

 

Figure 4. CN-SM and CN-ET soil moisture output during the 2015-2019 simulation period 
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Figure 5. CN-SM and CN-ET actual evapotranspiration output during the 2015-2019 simulation period 

depends on selecting a suitable PET method for the 

study area. Compared to CN-SM, the CN-ET simulation 

error is generally more significant, especially during the 

validation period. However, there are several peak 

streamflow events that the two approaches are unable 

to simulate accurately. CN-SM produces a slightly 

higher peak streamflow than CN-ET and is relatively 

close to the observational data. 

The objective function used in the calibration 

and validation is NSE, which means that the parameter 

values will be optimized from their initial values 

through several iterations until they reach the desired 

NSE value. When the system calculates the NSE value, 

it also adjusts other statistical values like R2 

automatically. Parameter's initial values are available in 

the SWAT2012 database, and some of them are 

updated based on field measurements, such as SOL_K, 

SOL_BD, SOL_CBN, and SOL_AWC. The optimal 

parameter values and their best-fit value are presented 

in Table 4. During calibration, there is a new parameter 

value that replaces its initial value (marked with "v_"), 

and some change relatively from their initial values  

(marked with "r_"). The sign "r_" usually for parameters 

whose values vary for each specific condition, so the 

change will be relative to customize each condition. The 

"r_" sign is usually used to calibrate parameters whose 

values vary for each type, such as soil type and land 

cover. Even though the calibrated parameters are 

identical, except for CNCOEF, there is a difference in the 

best-fit value, indicating that different models will apply 

The "r_" sign is usually used to calibrate parameters 

whose different parameter combinations. The main 

difference between CN-SM and CN-ET is the 

conceptual structure in calculating the retention 

parameter (S) so that the best-fit value obtained for 

estimating retention parameters will have implications 

for other hydrological processes. 

Due to differences in conceptual structure, 

optimization of CN-SM and CN-ET parameters causes 

different best-fit values for all parameters. Based on 

Table 4, one of the optimized sensitive parameters that 

need more attention because it directly relates to the 

model's structural uncertainty is SOL_Z. Apart from 

SOL_Z, the other parameters' best-fit value still makes 

sense in describing the biophysical conditions of the 

study area. During optimization, CN-SM SOL-Z does 

not change much from the initial value. At the same 

time, CN-ET SOL-Z changed about two-thirds of its 

initial value. Acrisols in the tropical lowland landscape 

have higher SOL_Z or classified on deep soil, even 

though its absolute value in the study has not been 

measured. The CN-ET's inability to describe SOL_Z in 

the study area is a weakness in implementing CN-ET 

due to its conceptual structure. A possible reason is that 

the CN-ET developed for shallow soils ostensibly 

simulates the runoff generation in the study area in 

shallow soil conditions (SOL_Z < 500 mm) (Kannan et 

al., 2008). Otherwise, CN-SM simulates runoff ge-

neration under deep soil conditions (SOL_Z > 500 mm). 

CN-ET and CN-SM have the same conceptual structure 

in simulating streamflow but very different when 

describing SOL_Z and simulating soil water storage. 

Although CN-ET and CN-SM simulated streamflow in 

the same magnitude, they simulated soil water storage 

in different quantities. These similarities and differences 

then lead to different interpretations of water re-

gulation services if the two approaches are not ade-

quately evaluated. 

Implication on Water Regulation Services 

Assessment 

Parameters optimization during the calibration 

process can produce streamflow output that is identical 

to observational data regardless of how the best-fit 

parameters affect other hydrological processes impre- 
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Table 5. Comparison of the annual water regulation 

services components and indicators among 

two SCS-CN approaches. 

 CN-SM CN-ET 

Input 

Precipitation (mm) 2156.7 2156.7 

Potential Evapotranspiration (mm) 1050.7 1050.7 

Output 

Water Yield (mm) 1683.0 1442.1 

Baseflow (mm) 4.1 0 

Surface Runoff (mm) 1602.6 1130.5 

Lateral Flow (mm) 15.0 13.7 

Actual Evapotranspiration (mm) 535.7 754.5 

Percolation (mm) 23.7 263.9 

Indicator 

Surface Runoff/Water Yield 0.95 0.78 

Surface Runoff/Precipitation 0.74 0.52 

Water Yield/Precipitation 0.78 0.67 

Actual/Potential Evapotranspiration 0.51 0.72 

Actual 

Evapotranspiration/Precipitation 

0.25 0.35 

cision. In several studies, when the objective func-tion 

defined in calibration achieves categories satis-factorily, 

the streamflow output will be interpreted in various 

scenarios. For example, both approaches can be relied 

on to evaluate the impacts of land-use change and 

climate change on streamflow. However, because this 

research is related to the assessment of water 

regulatory services, the model's interpretation is based 

not only on streamflow outputs but also on other water 

regulation services such as soil water storage and actual 

evapotranspiration. So, the uncertainty of CN-SM and 

CN-ET in simulating soil water storage and actual 

evaporation should be evaluated to minimize the 

output's misinterpretation. SWAT simulates soil 

moisture for each HRU as soil water storage (mm) in 

unsaturated conditions or available water content 

(AWC) between permanent wilting point (WP) and field 

capacity (FC). To get %v/v soil moisture in available 

water content, SWAT divides the soil water storage 

(mm) by soil depth (SOL_Z) and adds this result with 

water content at the permanent wilting point. 

The previous discussion has explained that CN-

ET simulates low soil water storage based on its best-fit 

parameters, especially for SOL_Z. As a result, the soil 

moisture dynamic (ΔS) at available water content 

becomes higher to compensate for higher capillary 

flow. It happens because the potential matrix (ψm) 

related to the soil surface tension forces of unsaturated 

soil water is preponderant for shallow soils (relationship 

between free energy gradient and soil depth). CN-SM 

simulates available soil moisture in the range from 

17.7 %v/v (WP) to 25.7 %v/v (FC). On the other hand, 

CN-ET simulates available soil moisture range from 

12.1 %v/v (WP) to 20.1 %v/v (FC). Compared with lab-

oratory test results, where the WP and FC in the study 

area are 16.9 ± 3.6 %v/v and 26.3 ± 1.75 %v/v, 

respectively, CN-SM has a more reasonable WP and FC 

value than CN-ET. However, both methods have the 

same AWC range, which is ≈ 0.8% v/v. The difference 

between their WP and FC causes different soil water 

flux interpretations at the same %v/v soil moisture 

condition. If %v/v is above FC or when the soil is 

saturated, excess water will be percolated into the 

groundwater layer due to higher gravitational force 

than other forces. If %v/v is in the AWC range as shown 

in Figure 4, available water will move capillary to the soil 

surface to compensate for soil evaporation and plant 

transpiration. Furthermore, if %v/v is below the WP, soil 

matrix suction will dominate so that water cannot move 

horizontally or vertically. 

Based on the water balance equation, 

differences in soil water dynamics at the same river 

discharge and rainfall cause differences in the actual 

evapotranspiration value (Ea = P – Q – ΔS). The mag-

nitude of actual evapotranspiration is a function of the 

energy required to evaporate water (PET), crop para-

meters related to the transpiration process, and water 

availability for the evaporation process (available soil 

moisture). So, the maximum value of actual evapo-

transpiration is the same as the PET when the soil water 

content in field capacity. Otherwise, the minimum value 

of actual evapotranspiration is zero when the soil water 

content in a permanent wilting point. At the same 

potential evapotranspiration conditions, the higher 

actual evapotranspiration is associated with higher soil 

water changes to compensate for capillary flow. 

Therefore, CN-ET's imprecision in simulating higher soil 

water changes then implicates the overestimated actual 

evapotranspiration (Figure 5). Based on that value, we 

can see that CN-ET is much worse at simulating other 

water regulation services components than CN-SM, 

although it is equally good at simulating streamflow. 

Apart from model comparisons, one of the trans-

piration-related crop parameters that affect the oil 

palm's actual evapotranspiration is the leaf area index 

(LAI). We know that mature oil palms with a high LAI 

value also have a higher actual evapotranspiration rate 

than young oil palms. Because actual evapotrans-

piration is simulated for each HRU (not individual plant), 

we used the mature oil palms environment LAI value of 

1.2 m2/m2 that derived from the mean of below 

canopies LAI and harvest path LAI value to control the 

amount of actual evapotranspiration and soil moisture 

dynamics for these each HRUs. 

Water regulation services assessment in an 

ecosystem generally compares one of the water flow 

components to others, such as the ratio of surface 

runoff to water yield, surface runoff to rainfall, water 
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yield to rainfall, actual evapotranspiration to rainfall, 

and actual to potential evapotranspiration. This 

comparison illustrates indicators related to the water 

regulation services sustainability, such as water 

regulation services are sustainable in a high ratio or 

even sustained at a low ratio. Table 5 shows the 

difference annual mean value of CN-SM and CN-ET 

water regulation component and their sustainability 

indicators. Due to the difference between CN-SM and 

CN-ET in simulating water regulation services com-

ponents, the relative relationship between these 

components is automatically different, so that the inter-

pretation of these sustainability indicators will also be 

different. Therefore, choosing an approach that can 

simulate water regulation services precisely and appro-

priately to the study area's biophysical characteristics is 

crucial to note before simulation. CN-ET, which is not 

suitable for application in the study area, may be more 

appropriate for water regulation services assessment in 

other areas with shallow soils. Otherwise, CN-SM 

effectively assesses water regulation services in deep 

soil but may not be as reliable in shallow soil (Kannan 

et al. 2008). The structure of the CN-ET model, which is 

developed to simulate rapid soil moisture dynamics as 

it occurs in shallow soils, causes an overestimated 

simulation of groundwater dynamics in the study area. 

Because the water balance is based on the law of mass 

conservation, if one component cannot be 

appropriately described, it will affect the misfit in the 

value of the other components. It is important to be 

considered because the accuracy of the simulation 

results significantly affects watershed management 

recommendations to improve water management 

services' sustainability. 

CONCLUSIONS 

The curve number (CN) method is a simple 

rainfall-runoff transformation method that only 

requires daily rainfall data (P) and watershed curve 

number that derived from land use, soil, and slope data 

but powerful to estimate excess rainfall as surface 

runoff. There are two different approaches for 

calculating the daily CN with the same input data, soil 

moisture curve number (CN-SM) as an original 

approach and plant evaporation curve number (CN-ET) 

as a modified approach. This study compared CN-SM 

and CN-ET in the SWAT model to evaluate their 

reliability and uncertainty in simulated water regulation 

services in an intermittent micro-catchment dominated 

by monoculture plantations with Acrisols soil. Through 

the calibration and validation process with 150 daily 

observation streamflow data, both approaches can 

estimate streamflow very well, as evidenced by high 

NSE and R2 values and acceptable uncertainty, as 

evidenced by P-Factor> 70% and R-Factor <1. A com-

parison of daily CN-ET and CN-SM streamflow during 

the simulation period also shown that both outputs are 

almost identical with high R2, so that both approaches 

can be chosen as an alternative in modeling streamflow. 

However, the CN-SM and CN-ET's conceptual structure 

differences cause differences in the calibrated para-

meters' best-fit value and their sensitivity to streamflow 

simulations. CN2, ALPHA_BNK, CH2, ESCO, SOL_Z, 

CH_N2, and RCHRG_DP are equally sensitive for CN-ET 

and CN-SM. SOL_BD and GWQMN are only sensitive to 

CN-SM. On the other hand, SOL_AWC and CNCOEF are 

only sensitive to CN-ET. There is no problem with CN-

SM's best-fit value during parameter optimization, but 

CN-ET cannot describe SOL_Z in the study area well. 

CN-ET developed for shallow soil simulates the runoff 

generation in the study area in shallow soil conditions 

(SOL_Z < 500 mm), while CN-SM describes SOL_Z 

adequately where the characteristic of Acrisol soil is 

deep soil (SOL_Z > 500 mm). Therefore, although CN-

ET and CN-SM simulated streamflow in the same 

magnitude, they simulated soil water storage dynamics 

in different quantities. CN-ET's inability to describe the 

study area's biophysical conditions well implicates low 

soil water storage and high soil water dynamics 

simulation, and that condition results in overestimated 

actual evapotranspiration. These output similarities and 

differences then lead to different interpretations of 

water regulation sustain-ability if we do not adequately 

evaluate those approaches. As a result, selecting a 

runoff curve number approach, which can replicate 

precision water regulation services and suit for 

describing the characteristics of the study area, is 

essential to be considered. The accuracy of the simu-

lation results significantly affects watershed manage-

ment recommendations to improve water regulations' 

sustainability. 
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