Respons Tanaman Sorgum atas Aplikasi Mikoriza Arbuskula pada Gradien Konsentrasi N dan P

  • Devanda Ayu Lidya Permata Putri Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University, Kampus IPB Darmaga, Bogor 16680
  • Rahayu Widyastuti Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University, Kampus IPB Darmaga, Bogor 16680
  • Idris Idris Pusat Riset Mikrobiologi Terapan, Badan Riset dan Inovasi Nasional (BRIN), Jl. Raya Bogor Km. 46, Bogor 16911
  • Azra Zahrah Nadhirah Ikhwani Badan Riset dan Inovasi Nasional (BRIN)
  • Satya Nugroho Pusat Riset Bioteknologi, Badan Riset dan Inovasi Nasional (BRIN), Jl. Raya Bogor Km. 46, Bogor 16911
  • I Made Sudiana Pusat Riset Mikrobiologi Terapan, Badan Riset dan Inovasi Nasional (BRIN), Jl. Raya Bogor Km. 46, Bogor 16911
  • Atit Kanti Pusat Riset Biosistematika dan Evolusi, Badan Riset dan Inovasi Nasional (BRIN), Jl. Raya Bogor Km. 46, Bogor 16911
  • Masaru Kobayashi Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo Ward, Kyoto Japan 606-8502

Abstract

Sorghum [Sorghum bicolor (L.) Moench] is a multipurpose food crop that can adapt to climate change. Sorghum productivity can be increased by applying chemical fertilizers and arbuscular mycorrhiza fungi (AMF). This research aimed to assess the effect of AMF application and N and P concentration gradients to support Super 2 and KS sorghum accession growth. The plants were grown in a sterilized zeolite (coarse and fine) and inoculated with Glomus mosseae 40 spores per pot. The experimental design was a randomized complete block design with 40 treatments and three replications. N and P concentration gradient treatments were carried out using a dose level of fertilizer N (urea) and P (TSP) at 12,5%; 50%; 75%; 100%; and 125%. Analysis of variance was carried out using SAS 9.0 software at a level of 5%, and the results were significantly different, followed by DMRT. The application of AMF and urea 50% and TSP 75% in Super 2 accessions and urea 50% and TSP 50% in KS accessions gave the highest plant height and biomass. However, the increase in sorghum growth did not correlate with root colonization and root length, which could be seen that the highest in both accessions were obtained at urea 12,5% and TSP 12,5%. The application of AMF can significantly lower the use of urea and TSP fertilizers by up to 50% compared to a positive control (urea and TSP 100%) and support sorghum growth in both accessions.

 

Keywords: Glomus mosseae, Konawe Selatan accession, Super 2 accession, TSP, urea

Downloads

Download data is not yet available.

References

A’isyah S, Napitupulu TP, Sudiana IM. 2019. Effect of zeolite particle size and levels of phosphate absorption and growth of Sorghum bicolor (L.) Moench. IOP Conference Series: Earth and Environmental Science. 308(012044): 1‒6. https://doi.org/10.1088/1755-1315/308/1/012044

Abdelhameid NM. 2020. Effect of Mycorrhizal Inoculation and Potassium Fertilization on Grain Yield and Nutrient Uptake of Sweet Sorghum Cultivated under Water Stress in Calcareous Soil. Egyptian Journal of Soil Science. 60(1): 17‒29.

Ananda GKS, Myrans H, Norton SL, Gleadow R, Furtado A, Henry RJ. 2020. Wild Sorghum as a Promising Resource for Crop Improvement. Frontiers in Plant Science. 11(1108): 1‒14. https://doi.org/10.3389/fpls.2020.01108

Arteaga S, Yabor L, Díez MJ, Prohens J, Boscaiu M, Vicente O. 2020. The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy. 20(817): 2‒16. https://doi.org/10.3390/ agronomy10060817

Astuti D, Sulistyowati Y, Nugroho S. 2019. Uji Radiosensitivitas Sinar Gamma untuk Menginduksi Keragaman Genetik Sorgum Berkadar Lignin Tinggi. Jurnal Ilmiah Aplikasi Isotop dan Radiasi. 15(1): 1‒6.

Bai X, Zhang T, Tian S. 2020. Evaluating Fertilizer Use Efficiency and Spatial Correlation of Its Determinants in China: A Geographically Weighted Regression Approach. International Journal of Environmental Research and Public Health. 17(8830): 1‒23. https://doi.org/10.3390/ ijerph17238830

Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. 2013. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affection root calcium spiking responses to the fungus. Frontiers in Plant Science. 4(426): 1‒15. https://doi.org/10.3389/fpls.2013.00426

Bassi D, Menossi M, Mattiello L. 2018. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Scientific Reports. 8(2327): 1‒13. https://doi.org/10.1038/s41598-018-20653-1

Boonlue S, Surapat W, Pukahuta C, Suwanarit P, Suwanarit A, Morinaga T. 2012. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience. 53: 10‒16. https://doi.org/10.1007/ s10267-011-0131-6

Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with Mycorrhizas in Forestry and Agriculture. Canberra: ACIAR Monograph 32.

Chen M, Yang G, Sheng Y, Li P, Qiu H, Zhou X, Huang L, Chao Z. 2017. Glomus mosseae Inoculation Improves the Root System Architecture, Photosynthetic Efficiency and Flavonoids Accumulation of Liquorice under Nutrient Stress. Frontiers in Plant Science. 8(931): 1‒10. https://doi.org/10.1016/j.plantsci.2017.05.005

Devnarain N, Crampton BG, Chikwamba R, Becker JVW, O’Kennedy MM. 2016. Physiological responses of selected African sorghum landrances to progressive water stress and re-watering. South African Journal of Botany. 103: 61‒69. https://doi.org/10.1016/j.sajb.2015.09.008

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity. 12(370): 1‒25. https://doi.org/10.3390/d12100370

Diaz G, Carrillo C, Honrubia M. 2010. Mycorrhization, growth and nutrition of Pinus halepensis seedlings fertilized with different doses and sources of nitrogen. Annals of Forest Science. 67(405): 1‒9. https://doi.org/10.1051/forest/2009125

El-Sherbeny TMS, Mousa AM, El-Sayed E-SR. 2021. Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi Journal of Biological Sciences. 29: 331‒338. https://doi.org/10.1016/j.sjbs.2021. 08.094

Geo JA, Nair AS, Vijayan AK. 2018. Association of Glomus Intraradices in Sorghum Bicolor. International Journal of Agricultural Science and Food Technology. 4(1): 3‒6. https://doi.org/10. 17352/2455-815X.000029

Giovannetti M, Mosse B. 1980. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytologist. 84: 489‒500. https://doi.org/10.1111/j.1469-8137. 1980.tb04556.x

Gosling P, Mead A, Proctor M, Hammond JP, Bending GD. 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist. 198: 546‒556. https://doi.org/10.1111/nph.12169

Heijden MGA, Martin FM, Selosse M-A, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist. 205: 1406‒1423. https://doi.org/10.1111/nph.13288

Hindumathi A, Reddy BN. 2011. Depedency of Sorghum on Arbuscular Mycorrhizal Colonization for Growth and Development. Journal of Mycology and Plant Pathology. 41(4): 537‒542.

Ingraffia R, Amato G, Sosa-Hernández MA, Frenda AS, Rillig MC, Giambalvo D. 2020. Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability. Frontiers in Plant Science. 11(760): 1‒12. https://doi.org/10.3389/ fpls.2020.00760

Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycology Research. 92(4): 486‒505. https://doi.org/10.1016/ S0953-7562(89)80195-9

Maiti RK. 1996. Sorghum Science. Lebanon (FR): Science Publishers.

Malhotra H, Vandana, Sharma S, Pandey R. 2018. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. Hasanuzzaman M et al, editor. Singapura (SG): Springer Nature. https://doi.org/10.1007/978-981-10-9044-8_7

McCormack ML, Iversen CM. 2019. Physical and Functional Constraints on Viable Belowground Acquisition Strategies. Frontiers in Plant Science. 10(1215): 1‒12. https://doi.org/10.3389/fpls.2019. 01215

Nakmee PS, Techapinyawat S, Ngamprasit S. 2016. Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agriculture and Natural Resources. 50: 173‒178. https://doi.org/ 10.1016/j.anres.2016.06.004

Oldroyd GED. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology. 11: 252‒263. https://doi.org/10.1038/ nrmicro2990

Purwanto A, Sušnik J, Suryadi FX, de Fraiture C. 2021. Quantitative simulation of the water-energy-food (WEF) security nexus in a local planning context in indonesia. Sustainable Production and Consumption. 25: 198‒216. https://doi.org/10.1016/ j.spc.2020.08.009

Ramadhani I, Suliasih, Widawati S, Sudiana IM, Kobayashi M. 2019. The effect of combination of arbuscular mycorrhiza and rhizobacteria and doses of NPK fertilizer on the growth of Sorghum bicolor (L.) Moench. IOP Conference Series: Earth and Environmental Science. 308(012045): 1‒11. https:// doi.org/10.1088/1755-1315/308/1/012045

Rani B, Madan S, Sharma KD, Pooja, Berwal MK, Kumar A. 2017. Effect of Mycorrhizal Colonization on Nitrogen and Phosphorus Metabolism in Wheat (Triticum aestivum L.) under Water Deficit Stress. International Journal of Current Microbiology and Applied Sciences. 6(10): 916‒929. https://doi.org/ 10.20546/ijcmas.2017.610.110

Subagio H, Aqil M. 2014. Perakitan dan Pengembangan Varietas Unggul Sorgum untuk Pangan, Pakan, dan Bioenergi. Iptek Tanaman Pangan. 9(1): 39‒50.

Suminar R, Suwarto, Purnamawati H. 2017. Penentuan Dosis Optimum Pemupukan N, P, dan K pada Sorgum. Jurnal Ilmu Pertanian Indonesia. 22(1): 6‒12. https://doi.org/10.18343/jipi.22.1.6

Suwarti, Efendi R, Massinai R, Pabendon MB. 2018. Evaluation of sweet sorghum (Sorghum bicolor L. [Moench]) on several population density for bioethanol production. IOP Conference Series: Earth and Environmental Science. 141(012032): 1‒11. https:// doi.org/10.1088/1755-1315/141/1/012032

Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shahchar-Hill Y. 2010. Regulation of Nitrogen Transfer Pathway in the Arbuscular Mycorrhizal Symbiosis: Gene Characterization and the Coordination of Expression with Nitrogen Flux. Plant Physiology. 153: 1175‒1187. https:// doi.org/10.1104/pp.110.156430

Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T. 2017. Agricultural practices to improve nitrogen use efficiency throught the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Science. 264: 48‒56. https://doi.org/10.1016/ j.plantsci.2017.08.004

Wang F, Sun Y, Shi Z. 2019. Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum. Microorganisms. 7(289): 1‒14. https://doi.org/10.3390/microorganisms7090289

Wang X, Hoffland E, Feng G, Kuyper TW. 2020. Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. Journal of Applied Ecology. 1‒9. https://doi.org/ 10.1111/1365-2664.13739

Whiteside MD, Garcia MO, Treseder KK. 2012. Amino Acid Uptake in Arbuscular Mycorrhizal Plants. PloS ONE. 7(10): 1‒4. https://doi.org/10.1371/journal. pone.0047643

Zaman I, Ali M, Shahzad K, Tahir MS, Matloob A, Ahmad W, Alamri S, Khurshid MR, Qureshi MM, Wasaya A, Baig KS, Siddiqui MH, Fahad S, Datta R. 2021. Effect of Plant Spacings on Growth, Physiology, Yield and Fiber Quality Attributes of Cotton Genotypes under Nitrogen Fertilization. Agronomy. 11(2589): 1‒15. https://doi.org/ 10.3390/agronomy11122589

Zubair A. 2016. SORGUM: Tanaman Multi Manfaat. Bandung (ID): Unpad Press.

Published
2022-12-26
How to Cite
PutriD. A. L. P., WidyastutiR., IdrisI., IkhwaniA. Z. N., NugrohoS., SudianaI. M., KantiA., & KobayashiM. (2022). Respons Tanaman Sorgum atas Aplikasi Mikoriza Arbuskula pada Gradien Konsentrasi N dan P. Jurnal Ilmu Pertanian Indonesia, 28(1), 83-92. https://doi.org/10.18343/jipi.28.1.83