Control and Automation: Insmoaf (Integrated Smart Modern Agriculture and Fisheries) on The Greenhouse Model

  • Ridwan Siskandar Study Program of Computer Engineering, College of Vocational Studies, IPB University, IPB Cilibende Campus, Bogor 16128
  • Sesar Husen Santosa Study Program of Industrial Management College of Vocational Studies, IPB University, IPB University, IPB Cilibende Campus, Bogor 16128
  • Wiyoto Wiyoto Study Program of Production Technology and Management of Aquaculture, College of Vocational Studies, IPB University, IPB Cilibende Campus, Bogor 16128
  • Billi Rifa Kusumah Study Program of Fishing Technology, Faculty of Marine and Fisheries Technology, Nahdlatul Ulama University of Cirebon, Cirebon 45111
  • Agung Prayudha Hidayat Study Program of Industrial Management College of Vocational Studies, IPB University, IPB University, IPB Cilibende Campus, Bogor 16128

Abstract

A greenhouse is an agricultural management system that has shown the efficiency of food production. This system is an effective alternative to ensure maximum production results. Agriculture with greenhouse technology can create the desired environmental/climatic conditions. The rapid development of technology and science has led to the birth of communication between devices using IoT and AI. This technology can be applied to greenhouses in agriculture and fisheries. Research on greenhouse and microcontroller-based automation systems has been carried out, and it is interesting to be developed. Researchers make a more efficient system and can increase the quality and quantity of production. The measurement data of both modes are monitored using the web. The greenhouse prototype is supported by DHT22, DS18B20, a fan to control the greenhouse cooler, RFID as the key access to the greenhouse. DHT22 & DS18B20 sensor readings in the prototype greenhouse use an AI system with the fuzzy method. IoT and AI have been successfully implemented in models of rice fields, hydroponic farming, and fisheries using automatic modes of RTC devices and sensors. The fuzzy approach method is used to find the optimum temperature and humidity values. The fuzzy approach was successfully carried out until the temperature and humidity conditions were "ideal," "high," and "very high." This condition provides information to the microcontroller to activate which fan should turn on. In manual mode, the smartphone application controls the system properly.

 

Keywords: artificial intelegent, control and automation, fuzzy logic, greenhouse, IoT

Downloads

Download data is not yet available.

References

Altamirano M, Ana, Pérez JS, Muñoz P, Gabarrell X. 2020. Analysis of Urban Agriculture Solid Waste in the Frame of Circular Economy: Case Study of Tomato Crop in Integrated Rooftop Greenhouse. Science of The Total Environment. 139375. https://doi.org/10.1016/j.scitotenv.2020.139375.

Benyezza H, Bouhedda M, Zerhouni MC, Boudjemaa M, Dura SA. 2018. Fuzzy Greenhouse Temperature and Humidity Control Based Arduino. International Conference on Applied Smart Systems (ICASS). 1–6. doi: 10.1109/ICASS.2018.8652017.

Borstel, Von FD, Suárez J, De E, Joaquín R, Borstel FDV, Rosa ED. 2013. Feature Article Feeding and Water Monitoring Robot in Aquaculture Greenhouse. Industrial Robot: An International Journal. 40(1): 10–19. https://doi.org/10.1108/ 01439911311294219.

Chaudhary DD, Nayse SP, Waghmare LM 2011. Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. International Journal of Wireless & Mobile Networks (IJWMN). 3(1): 140–49.

Cobantoro, Fajaryanto A, Setyawan MB, and Wibowo MAB. 2019. Otomasi Greenhouse Berbasis Mikrokomputer Raspberry PI. Jurnal Ilmiah Teknologi Informasi Asia. 13(2): 115. https:// doi.org/10.32815/jitika.v13i2.360.

El-madbouly, Essam, Ibrahim A, Hameed. 2017. “Reconfigurable Adaptive Fuzzy Fault-Hiding Control for Greenhouse Climate Control System Mohamed I, Abdo. International Journal of Automation and Control. 11(2): 164–87.

Ferentinos, Katsoulas KPN, Tzounis A, Kittas C, Bartzanas T. 2015. A Climate Control Methodology Based on Wireless Sensor Networks in Greenhouses. Innovation and New Technologies in Protected Cropping. 75–82. https://doi.org/ 10.17660/ActaHortic.2015.1107.9.

Ghani, Saud, Bakochristou F, Ali EM, Bialy AE, Gamaledin SMA, Rashwan M, Abdelhalim AM, Ismail SM. 2019. Design Challenges of Agricultural Greenhouses in Hot and Arid Environments – A Review. Engineering in Agriculture, Environment and Food. 12(1): 48–70. https://doi.org/ 10.1016/j.eaef.2018.09.004.

Gourdo L, Fatnassi H, Tiskatine R, Wifaya A, Demrati H, Aharoune A, Bouirden L. 2019. Solar Energy Storing Rock-Bed to Heat an Agricultural Greenhouse. Energy. 169(1): 206–212. https:// doi.org/10.1016/j.energy.2018.12.036.

Gregoryan, Moses, Andjarwirawan J, Lim R. 2019. Sistem Kontrol Dan Monitoring Ph Air Serta Kepekatan Nutrisi Pada Budidaya Hidroponik Jenis Sayur Dengan Teknik Deep Flow Techcnique. Jurnal Infra. 7(2): 1–6.

Gruening MAC, Goded I, Seufert G, Cescatti A. 2016. Agriculture , Ecosystems and Environment Water Management Reduces Greenhouse Gas Emissions in a Mediterranean Rice Paddy Fi Eld. Agriculture, Ecosystems and Environment. 1–11. https:// doi.org/10.1016/j.agee.2016.08.017.

Haris, Abdul, Kusuma DT, Pratama RN. 2018. Sistem Penyortiran Buah Apel Manalagi Menggunakan Sensor. Jurnal PETIR. 11(1): 92–95.

Hu, Guangji, Bakhtavar E, Hewage K, Mohseni M, Sadiq R. 2019. Heavy Metals Risk Assessment in Drinking Water: An Integrated Probabilistic-Fuzzy Approach. Journal of Environmental Management 250(1): 109514. https://doi.org/10.1016/j.jenvman. 2019.109514.

Humaerah, Dwi A. 2013. Budidaya Padi (Oryza Sativa) dalam Wadah dengan. Jurnal Agribisnis. 7(2): 199–210.

Keykavoussi, Ashkan, Ebrahimi A. 2018. Total Quality Management & Business Excellence Using Fuzzy Cost – Time Profile for Effective Implementation of Lean Programmes ; SAIPA Automotive Manufacturer, Case Study. Total Quality Management. 0(0): 1–25. https://doi.org/10.1080/ 14783363.2018.1490639.

Kuncoro, Hari P, Wijaya K. 2019. Serang Kabupaten Purbalingga terhadap Teknologi Screen-House dan Sistem Hidroponik untuk Memperkuat Budidaya Strawberry. Jurnal Pengabdian Kepada Masyarakat 3(1): 28–33.

Kusuma A, Darlis D, Novianti A. 2019. Implementation of Smart Garden Watering on Dormitory Garden of Telkom University Using Ethernet Module On Raspberry Pi Based on IoT. E-Proceeding of Applied Science. 5(3): 2902–2911.

Lamprinos, Ilias, Charalambides M, Chouchoulis M. 2015. Greenhouse Monitoring System Based on a Wireless Sensor Network. Conference Proceedings Paper – Sensors and Applications, no. 2: 1–6. https://doi.org/10.3390/ecsa-2-E009.

Latif A, Megantoro P. 2020. The Prototype of Automatic Water Sprinkle with Soil Moisture Sensor Based on ATMega 8535. Journal of Physics: Conference Series. 1464(1). https://doi.org/10.1088/1742-6596/1464/1/012035.

Maghfiroh, Hari, Hermanu C, Ibrahim MH, Anwar M, Ramelan A. 2020. Hybrid Fuzzy-PID like Optimal Control to Reduce Energy Consumption. Telkomnika (Telecommunication Computing Electronics and Control). 18(4): 2053–2061. https:// doi.org/10.12928/TELKOMNIKA.V18I4.14535.

Marzuki, Imam, Wicaksono I. 2019. Rancang Bangun Sistem Pemantauan Dan Kontrol Otomatis Pada Greenhouse Berbasis Wireless Sensor Network (WSN). Program Studi Teknik Elektro Fakultas Teknik Universitas Panca Marga. 4(2): 1–5.

Mccoy, Daniel, Mcmanus MA, Hi A, Young C, Andrea BD, Ruttenberg KC, Alegado A. 2017. Large-Scale Climatic Effects on Traditional Hawaiian Fishpond Aquaculture. PLoS ONE. 1–17.

Meili, Liu, Yankang B. 2018. Embedded Automatic Control System for Temperature, Humidity and Light Intensity in Agricultural Greenhouses. In Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control (ISCSIC '18). Association for Computing Machinery, New York, 14. 1–5. https://doi.org/10.1145/ 3284557.3284742

Miranda, Jhonattan, Ponce P, Molina A, Wright P. 2019. Computers in Industry Sensing, Smart and Sustainable Technologies for Agri-Food 4. Computers in Industry. 108(1): 21–36. https:// doi.org/10.1016/j.compind.2019.02.002.

Nasution IS, Iskandar MR, Jayanti DS. 2020. Internet of Things: Automatic Sprinklers in Prototyping Greenhouse Using Smartphone Based Android. IOP Conference Series: Earth and Environmental Science. 425(1). https://doi.org/10.1088/1755-1315/425/1/012069

Pitakphongmetha J, Boonnam N, Wongkoon S, Horanont T, Somkiadcharoen D, Prapakornpilai J. 2016. Internet of things for planting in smart farm hydroponics style. IEEE Explore. 1–5. http://doi.org/10.1109/ICSEC.2016.7859872

Pourjavad, Ehsan, Shahin A. 2018. The Application of Mamdani Fuzzy Inference System in Evaluating Green Supply Chain Management Performance. International Journal of Fuzzy Systems. 20(3): 901–12. https://doi.org/10.1007/s40815-017-0378-y.

Rahayu, Nina, Utami WS, Razabi MM. 2018. Rancang Bangun Sistem Kontrol dan Pemantauan Aquaponic Berbasis IoT pada Kelurahan Kutajaya. ICIT Journal. 4(2): 192–201. https://doi.org/ 10.33050/icit.v4i2.93.

Rahmawati, Diana. 2019. Pengujian Monitoring On-Line Rumah Kaca Cerdas Berbasis Android. Cyclotron. 2(1). https://doi.org/10.30651/ cl.v2i1.2529.

Santosa SH, Irawan S, Ardani I. 2020. Determination of Overall Equipment Effectiveness Superflex Machine Using Fuzzy Approach. 4(2). https://doi.org/10.29099/ijair.v4i2.142.

Santosa SH, Suhendar S, Hidayat AP, and Ardani I. 2020. Fuzzy Logic Approach to Determine the Optimum Nugget Production Capacity. Jurnal Ilmiah Teknik Industri. 19(1): 70–83. https:// doi.org/10.23917/jiti.v19i1.10295.

Saraswathi D, Manibharathy P, Gokulnath R, Sureshkumar E, Karthikeyan K. 2011. Automation of Hydroponics Green House Farming Using IOT. IEEE, no. 1997: 1–4.

Siregar, Baihaqi, Efendi, Sahrul, Pranoto, Heru, Ginting, Roy, Andayani, Ulfi, Fahmi. 2017. Remote monitoring system for hydroponic planting media. 1–6. 10.1109/ICTSS.2017.8288884.

Siskandar R, Kusumah BR. 2019. Design and Construction of Control Devices for Aquaponic Monitoring Management. Aquacultura Indonesiana, 20(2): 72–79. https://doi.org/10.21534/ai.v20i2.151

Siskandar R, Fadhil MA, Kusumah BR. 2020. Internet Of Things : Automatic Plant Watering System. 9(4): 297–310.

Sujadi H, Nurhidayat Y. 2019. Smart Greenhouse Monitoring System Based on Computer Science | Industrial Engineering | Mechanic Engineering | Civil Engineering Computer Science | Industrial Engineering | Mechanic Engineering | Civil Engineering. Jurnal J-Ensitec. 6(1): 371–377.

Sung, Wen-tsai, Chen J, Hsiao SJ. 2017. “Fish Pond Culture via Fuzzy and Self-Adaptive Data Fusion Application.” IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2986–2991.

Sutikno, Khotib M. 2019. Prototipe Sistem Kontrol Parameter Fisik (Suhu-Kadar Air Tanah-Kelembaban Udara) Pada Green House Untuk Budidaya Tanaman Cabai. 1(2): 86–92. https:// doi.org/10.32528/elkom.v1i2.3087.

Syah ANA, Nuryawati T, Litananda WS. 2018. “Pengembangan Smart Greenhouse Untuk Budidaya Holtikultura.” Seminar Nasional PERTETA 2018, no. 2010: 1–10.

Vera M, Marco A, Julio C, Fernández R, Natale LFC, Lafont F, Balmat JF, Jorge I, Esparza-Villanueva. 2016. Temperature Control in a MISO Greenhouse by Inverting Its Fuzzy Model. Computers and Electronics in Agriculture 124: 168–74. https:// doi.org/10.1016/j.compag.2016.04.005.

Xu J, Dai F, Xu Y, Yao C, Li C. 2019. Wireless Power Supply Technology for Uniform Magnetic Field of Intelligent Greenhouse Sensors. Computers and Electronics in Agriculture. 156. https://doi.org/ 10.1016/j.compag.2018.11.014.

Zhou Q, Wu W, Liu D, Li K, Qiao Q. 2016. Estimation of Corrosion Failure Likelihood of Oil and Gas Pipeline Based on Fuzzy Logic Approach. Engineering Failure Analysis. 70: 48–55. https:// doi.org/10.1016/j.engfailanal.2016.07.014.

Published
2022-01-20
How to Cite
SiskandarR., SantosaS. H., WiyotoW., KusumahB. R., & HidayatA. P. (2022). Control and Automation: Insmoaf (Integrated Smart Modern Agriculture and Fisheries) on The Greenhouse Model. Jurnal Ilmu Pertanian Indonesia, 27(1), 141-152. https://doi.org/10.18343/jipi.27.1.141