Maja Fruit Extracts Inhibit Escherichia coli, Reduce Fly Larvae Population, and Ammonia Emission of Chicken Excreta

  • B. L. Syaefullah Department of Animal Product Technology, Faculty of Animal Sciences, Universitas Gadjah Mada
  • Y. Erwanto Department of Animal Product Technology, Faculty of Animal Sciences, Universitas Gadjah Mada
  • Wihandoyo Department of Animal Production, Faculty of Animal Sciences, Universitas Gadjah Mada
  • Muhlisin Department of Animal Nutrition and Feed Science, Faculty of Animal Sciences, Universitas Gadjah Mada
  • R. A. Prasetyo Department of Animal Product Technology, Faculty of Animal Sciences, Universitas Gadjah Mada
  • N. Kurniawati Department of Animal Product Technology, Faculty of Animal Sciences, Universitas Gadjah Mada
  • N. A. Fitriyanto Department of Animal Product Technology, Faculty of Animal Sciences, Universitas Gadjah Mada
Keywords: maja fruit extract, marmelosin, antibacterial activity, ammonia emission, chicken excreta


The characteristic of chicken excreta has a very potential as a breeding media for flies and is known for causing odorous pollutants (NH3 emission) from undigested protein and the activities of urease microorganisms. This study is focused on extracting Maja fruit, to quantify marmelosin from different fruit conditions using HPLC, and to determine the biological activity for handling the chicken excreta problems. In this study, the Kirby-Bauer Test was used to observe the antibacterial activity of marmelosin, the NH3 trapping method was used to determine ammonia emission, and the larvae population was determined by the Fly-Grill method. Marmelosin contents in MFE from immature, mature, and fermented fruit condition were 108.65 μg/g; 65.83 μg/g, and 23.02 μg/g, respectively. The increasing level of marmelosin addition to 50, 100, 150, and 200 μg/mL caused the higher diameter of inhibition zone against E. coli (p<0.05), which were 2.50, 2.90, 5.06, and 7.27 mm, respectively. The increasing level of MFE addition at 5, 7.5, and 10% (v/v) showed a higher inhibition effect on the NH3 emission from the excreta. The addition of MFE up to 10% (v/v) had no significant effect on the total larvae population of flies that existed in the excreta. It can be concluded that the highest marmelosin content was confirmed in the immature fruit condition. The highest antibacterial activity of marmelosin from MFE was shown at the concentration of 200 µg/mL. The application of 10% (v/v) MFE to the excreta gave the highest inhibition of NH3 emission and minimized the average larvae population of flies.


Download data is not yet available.


Ahmed, Z. A. M., Z. M. Sedik, M. D. Alharery, M. A. Khalaf, S. A. Nasr, & H. A. Abdelrahman. 2012. Microbial ecology of composting dead poultry and their wastes. Glob. Vet. 9: 683-690.

Ali, S., M. I. Ullah, M. Arshad, Y. Iftikhar, M. Saqib & M. Afzal. 2017. Effect of botanicals and synthetic insecticides on Pieris brassicae (L., 1758) (Lepidoptera: Pieridae). Turkiye Entomoloji Derg. 41: 275-284.

Baydar, H., H. Schulz, H. Krüger, S. Erbas, & S. Kineci. 2008. Influences of fermentation time, hydro-distillation time and fractions on essential oil composition of Damask Rose (Rosa damascena Mill.). J. Essent. Oil-Bear. Plants. 11: 224-232.

Bhattacherjee, A. K., A. Dikshit, D. Pandey, & D. K. Tandon. 2013. High performance liquid chromatographic determination of marmelosin and psoralen in bael (Aegle marmelos (L.) Correa) fruit. J. Food Sci. Technol. 52: 597-600.

Bosly, A. H. 2013. Evaluation of insecticidal activities of Mentha piperita and Lavandula angustifolia essential oils against house fly, Musca domestica L. (Diptera: Muscidae). J Entomol. Nematol. 5: 50-54.

Caroprese, M., M. G. Ciliberti, & M. Albenzio. 2020. Chapter 15 - Application of Aromatic Plants and Their Extracts in Dairy Animals. In: Aromatic Plants and Herbs in Animal Nutrition and Health. Feed Additives, Elsevier Inc. p. 261-277.

Chinchansure, A. A., N. H. Shamnani, M. Arkile, D. Sarkar, & S. P. Joshi. 2015. Antimycobacterium activity of coumarins from fruit pulp of Aegle marmelos (L.) Correa. Int. J. Basic Appl. Chem. Sci. 5: 39-44.

El-Sherbini, G. T. & N. O. Hanykamel. 2014. Insecticidal effects of Fortunella crassifolia essential oil used against house fly (Musca domestica). Int. J. Curr. Microbiol. App. Sci. 3: 1-9.

Fitriyanto, N. A., A. Winarti, F. A. Imara, Y. Erwanto, T. Hayakawa, & T. Nakagawa. 2017. Identification and growth characters of nitrifying Pseudomonas sp., LS3K isolated from odorous region of poultry farm. J. Biol. Sci. 17: 1-10.

Flores-Encarnacion, M., R. M. Nava-Nolazco, R. Carreno-Lopez, G. R. Aguilar-Gutierrez, S. C. Garcia-Garcia, & C. Cabrera-Maldonado. 2016. The antibacterial effect of plant-based essential oils. Int. J. Res. Stud. Biosci. 4: 1-6.

Friedrich, A. W., R. Köck, M. Bielaszewska, W. Zhang, H. Karch, & W. Mathys. 2005. Distribution of the urease gene cluster among and urease activities of enterohemorrhagic Escherichia coli O157 isolates from humans. J. Clin. Microbiol. 43: 546-550.

Geden, C. J. 2012. Status of biopesticides for control of house flies. J. Biopestic. 5: 1-11.

Hudzicki, J. 2016. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. In American Society For Microbiology, American Society for Microbiology. p. 1-13.

Jana, B. R., Md. Idris, & M. Singh. 2017. Physico-chemical changes and pest incidence associated with development of bael (Aegle marmelos Correa.) fruit. Adv. Plants Agric. Res. 7: 422-425.

Konieczna, I., P. Zarnowiec, M. Kwinkowski, B. Kolesinska, J. Fraczyk, Z. Kaminski, & W. Kaca. 2012. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 13: 789-806.

Kozioł, E., & K. Skalicka-Woźniak. 2016. Imperatorin-pharmacological meaning and analytical clues: profound investigation. Phytochem. Rev. 15: 627-649.

Kumar, P., S. Mishra, A. Malik, & S. Satya. 2011. Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica. Med. Vet. Entomol. 25: 302-310.

Maliselo, S. & P. Mwaanga. 2016. Effects of pH, moisture and excreta age on ammonia emission in a poultry house: a case study for Kitwe, Zambia. Int. J. Sci. Res. Publ. 6: 73-76.

Min, B. R., W. E. Pinchak, R. C. Anderson, & T. R. Callaway. 2007. Effect of tannins on the in vitro growth of Escherichia coli O157: H7 and in vivo growth of generic Escherichia coli excreted from steers. J. Food Prot. 70: 543-550.

Morey, R. A. & A. J. Khandagle. 2012. Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L. Parasitol. Res. 111: 1799-1805.

Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola, & V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 6: 1451-1474.

Neeraj, V. B. & V. Johar. 2017. Bael (Aegle marmelos) extraordinary species of India: A Review. Int. J. Curr. Microbiol. Appl. Sci. 6: 1870-1887.

Pastawan, V., Y. Erwanto, L. M. Yusiati, Jamhari, T. Hayakawa, T. Nakagawa & N. A. Fitriyanto. 2017. Ability of indigenous microbial consortium in the process of ammonia oxidation of livestock waste. Asian J. Anim. Sci. 11:74-81.

Patra, J. K. & K. H. Baek. 2016. Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza L. against foodborne pathogenic bacteria. Molecules. 21: 1-11.

Putra, R. E., A. Rosyad & I. Kinasih. 2013. Growth and development of Musca domestica Linnaeus (Diptera: Muscidae) larvae in different livestock manures. J. Entomol. Indones. 10: 31-38.

Rajan S. M. Gokila, P. Jency, P. Brindha, & R. K. Sujatha. 2011. Antioxidant and phytochemical properties of Aegle marmelos fruit pulp. Int. J. Curr. Pharm. Res. 3: 65-70.

Riaz, B., M. K. Zahoor, M. A. Zahoor, H. N. Majeed, I. Javed, A. Ahmad, F. Jabeen, M. Zulhussnain, & K. Sultana. 2018. Toxicity, phytochemical composition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster. Evidence-Based Complementary and Alternative Medicine. 2018: 1-11.

Rothrock Jr, M. J., K. L. Cook, N. Lovanh, J. G. Warren, & K. Sistani. 2008. Development of a quantitative real-time polymerase chain reaction assay to target a novel group of ammonia-producing bacteria found in poultry litter. Poult. Sci. J. 87: 1058-1067.

Saif, M. M. S., A. A. Al-Fakih & M. A. M. Hassan. 2017. Antibacterial activity of selected plant (Aqueous and methanolic) extracts against some pathogenic bacteria. J. Pharmacogn. Phytochem. 6: 1929-1935.

Singh, G., Shamsuddin M. R., Aqsha, & Lim S. W. 2018. Characterization of chicken manure from Manjung region. IOP Conf. Ser. Mater. Sci. Eng. 458: 1-6.

Wells, J. E., E. D. Berry, M. N. Guerini, & V.H. Varel. 2014. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens. J. Appl. Microbiol. 118: 295–304.

Wolfe, M. K., H. N. Dentz, B. M., A. Beryl, M. Mureithi, T. Wolfe, C. Nul, & A. J. Pickering. 2017. Adapting and evaluating a rapid, low-cost method to enumerate flies in the household setting. Am. J. Trop. Med. Hyg. 96: 449-456.

Wood, D. J. & B. J. Van Heyst. 2016. A review of ammonia and particulate matter control strategies for poultry housing. Transactions of the ASABE. 59: 329-344.

How to Cite
Syaefullah, B. L., Erwanto, Y., Wihandoyo, Muhlisin, Prasetyo, R. A., Kurniawati, N., & Fitriyanto, N. A. (2020). Maja Fruit Extracts Inhibit Escherichia coli, Reduce Fly Larvae Population, and Ammonia Emission of Chicken Excreta. Tropical Animal Science Journal, 43(4), 369-376.