Evaluation of Mineral Contents in Milk of Dairy Cattle Fed Elephant Grass Planted at Ex-Coal Mining Land

  • H. Harmini Indonesian Research Institute for Animal Production (IRIAP)
  • D. Evvyernie Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University
  • P. D. M. H. Karti Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University
  • Y. Widiawati Indonesian Research Institute for Animal Production (IRIAP)
Keywords: ex-coal mining, elephant grass, heavy metal, milk production and quality

Abstract

The growth of several types of grass in the area of ​​mine re-vegetation is rapidly providing an opportunity to be used as forages despite the possibility of heavy metal contamination. The purpose of the study was to evaluate the effect of treatment of different levels of elephant grass (EG) (Pennisetum purpureum) planted at ex-coal mining reclamation on milk productivity and mineral contents of dairy cattle. This study used four lactating (second lactation) dairy cattle using Latin Square Design of 4 (treatments) x 4 (replications). Each period was 21 days consisted of 14 days of preliminary for feed adaptation and 7 days for observation. Treatments were P0 (0% ex-coal mining (EEG)+60% Farmer’s EG (FEG)+40% Concentrate), P1 (15% EEG+45% FEG+40% Concentrate), P2 (30% EEG+30% FEG+40% Concentrate), and P3 (60% EEG+0% FEG+40% Concentrate). The study observed variables of feed intake and efficiencies, milk production, milk quality, and mineral contents of milk. Results showed that EEG treatment at different levels did not affect fresh and dry matter intake. The highest fresh and dry matter intake was found in P0 treatment. There was no significant difference in giving EG planted at the ex-coal mining and the farmer’s land on the milk production and milk quality. The only significant differences (p<0.05) were found in mineral Fe and Mg contents of milk. The study concluded that giving EG planted at the ex-coal mining area until 60% of forage affected Fe and Mg contents of milk, but they are still in the safe limit.

Downloads

Download data is not yet available.

Author Biography

H. Harmini, Indonesian Research Institute for Animal Production (IRIAP)

Researcher at RIAP

References

Adhani N., T. Nurhajati, & A. T. S. Estoepangestie. 2012. Potensi pemberian formula pakan konsentrat komersial terhadap konsumsi dan kadar bahan kering tanpa lemak susu. J. Agro Vet. 1: 11-16.

Alessio, D. R. M., J. P. Velho, V. C. P. Silveira, D. A. Knob, M. Busanello, A. A. C. Tambara, & A. T. Neto. 2018. Roughage sources for Holstein cows under experimental feeding conditions in Brazil- a metaanalysis. Semina: Ciências Agrárias. 39: 2749-2760. https://doi.org/10.5433/1679-0359.2018v39n6p2749

Ali, S. M. & R. N. Malik. 2011. Spatial distribution of metals in topsoils of Islamabad City, Pakistan. Environ. Monit. Assess. 172: 1-16. https://doi.org/10.1007/s10661-010-1314-x

Al-Sharafat, A. 2013. Technical efficiency of dairy farms: A stochastic frontier application on dairy farms in Jordan. J. Agric Sci. 5: 45-52. https://doi.org/10.5539/jas.v5n3p45

Andrianasolo, F. N., L. Champolivier, P. Debaeke, & P. Maury. 2016. Source and sink indicators for determining nitrogen, plant density, and genotype effects on oil and protein contents in sunflower achenes. Field Crops Res. 192: 33-41. https://doi.org/10.1016/j.fcr.2016.04.010

Atzori, A. S., L. O. Tedeschi, & A. Cannas. 2013. A multivariate and stochastic approach to identify key variables to rank dairy farms on profitability. J. Dairy. Sci. 96: 3378-6256. https://doi.org/10.3168/jds.2012-6256

Statistics Indonesia. 2018. Indonesian Statistics. Statistics Indonesia. Jakarta. Indonesia

BSN (National Standardization Agency of Indonesia). 1998. Classification of coal resources and reserves. Standard Nasional Indonesia (National Standardization Agency of Indonesia) No. 13-5014-1998. Jakarta, Indonesia.

BSN (National Standardization Agency of Indonesia). 2009. Concentrated feed - part 1: dairy cows. Standard Nasional Indonesia (National Standardization Agency of Indonesia) No. 3148.1: 2009. Jakarta, Indonesia

BSN (National Standardization Agency of Indonesia). 2011. Fresh Milk-Part 1: Cow. Standard Nasional Indonesia (National Standardization Agency of Indonesia) No. 3141: 2011. Jakarta, Indonesia.

Buza, M. H., L. A. Holden, R. A. White, & V. A. Ishler. 2014. Evaluating the effect of ration composition on income feed cost and milk yield. J. Dairy Sci. 97: 3073-3080. https://doi.org/10.3168/jds.2013-7622

Corea, E. E., J. M. Aguilar, N.P. Alas, E. A. Alas, J. M. Flores, & G. A. Broderick. 2017. Effects of dietary cowpea (Vigna sinensis) hay and protein level on milk yield, milk composition, N efficiency, and profitability of dairy cows. Anim. Feed. Sci. Tech. 226: 48-45. https://doi.org/10.1016/j.anifeedsci.2017.02.002

Costa, A, N. Lopez-Villalobos, N. W. Sneddon, L. Shallo, M. Franzoi, M. De Marchi, & M. Penasa. 2019. Invited review: Milk lactose - current status and future challenges in dairy cattle. J. Dairy Sci. 102: 5883-5898. Animal. 1:1-8. https://doi.org/10.3168/jds.2018-15955

Cunha, O. F. R., J. N. M. Neiva, R. P. Maciel, J. Restle, V. L. Araujo, J. Paiva, & F. R. C. Miotto. 2013. Palm (Elaeis guineensis L.) kernel cake in diets for dairy cows. Semina: Ciências Agrárias, Londrina. 34:445-454. https://doi.org/10.5433/1679-0359.2013v34n1p445

Davidov I, Z. Kovacevic, D. Stojanovic, M. Pucarevic, M. Radinovic, N. Stojic & M. Erdeljan. 2019. Contamination of cow milk by heavy metals in Serbia. Acta Sci. Vet. 47:1-4. https://doi.org/10.22456/1679-9216.96366

Dickhoefer, U., S. Glowacki, C.A. Gomez & J.M. Castro-Montoya. 2018. Forage and protein use efficiency in dairy cows grazing a mixed grass-legume pasture and supplemented with different levels of protein and starch. Livest. Sci. 216: 109-118. https://doi.org/10.1016/j.livsci.2018.08.004

Donaldson, S.G, J. Van Potsdam, C. Tikhonov, M. Feeley, B. Armstrong, P. Ayotte, O. Boucher, W. Bowers, L. Chan, F. Dallaire, R. Dallaire, É. Dewailly, J. Edwards, G. M. Egeland, J. Fontaine, C. Furgal, T. Leech, E. Loring, G. Muckle, T. Nancarrow, D. Pere, P. Plusquellec, M. Potyrala, O. Receveur, & R. G. Shearer. 2010. Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ. 408: 5165-5234. https://doi.org/10.1016/j.scitotenv.2010.04.059

Dubey, M., V. P. Singh, R. K. Pandey, & A. K. Chaubey. 2017. Economic analysis of feeding management and milk production at the University Dairy Farm. Int. J. Curr. Microbiol. App. Sci. 6: 480-486. https://doi.org/10.20546/ijcmas.2017.602.054

FAO (Food Agricultural Organization). 2002. Codex Alimentarius-general standards for contaminants and toxins in food. Schedule 1 Maximum and guideline levels for contaminants and toxins in food, Joint FAO/WHO food standards programme: Codex committee. Reference CX/FAC 02/16. Rotterdam.

Feng, Y., J. Wang, Z. Bai, & L. Reading. 2019. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews 191: 12-25. https://doi.org/10.1016/j.earscirev.2019.02.015

Fu, Q., W. Shen, Z. Wei, P. Zheng, H. Xin, & C. Zhao. 2019. Prediction of the diet nutrients digestibility of dairy cows using Gaussian process regression. Information Processing in Agricultural 6: 396-406. https://doi.org/10.1016/j.inpa.2018.11.005

Gaafar, H. M. A., E. M. Abdel-Raouf, & K. F. A. El-Reidy. 2010. Effect of fibrolytic enzyme supplementation and fiber content of total mixed ration on productive performance of lactation buffaloes. Slovak. J. Anim. Sci. 43: 147-153. https://sjas.ojs.sk/sjas/article/view/347/335

Ganz, T. & E. Nemeth. 2006. Regulation of iron acquisition and iron distribution in mammals. BBA-Molecular Cell Research. 1763: 690-699. https://doi.org/10.1016/j.bbamcr.2006.03.014

Goft, J. P. 2018. Invited review: Mineral absorption mechanism, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status, and diet consideration to improve mineral status. J. Dairy Sci. 101:2763-2813. https://doi.org/10.3168/jds.2017-13112

Gravert, H. O. 1987. Dairy Cattle Production. World Animal Science. Elsevier Science Publishers B.V., Amsterdam.

Hansen, S. L & W. Spears. 2009. Bioaccessibility of iron soil is increased by silage fermentation. J. Dairy Sci. 92: 2896-2905. https://doi.org/10.3168/jds.2008-1933.

Hess, P. S., S. R. O. William, J. L. Jacobs, M. C. Hannah, K. A. Beauchemin, R. J. Eckard, W. J. Wales, G. L. Morris, & P. J. Moate. 2019. Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. J. Dairy Sci. 102: 2714-2723. https://doi.org/10.3168/jds.2018-14721

IPB (Institut Pertanian Bogor). 2014. Standard Operational Procedures for Mineral Analysis Preparation. Bogor.

Kabir, A., K. Khan, M. I. H.Khan, T. Jubair, & E. Jhahan. 2017. A study of heavy metal presence in cow milk of different dairy farms near Karnafuli paper mills, Chittagong, Bangladesh. AJER. 6: 329-333.

Kim, J. J, Y. S. Kim, & V. Kumar. 2019. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elements Med. Biol. 54: 226-231. https://doi.org/10.1016/j.jtemb.2019.05.003

Krizsan, S. J., A. Sairanen, A. Hojer, & P. Huhtanen. 2014. Evaluation of different feed intake models for dairy cows. J. Dairy Sci. 97: 2387-2397. https://doi.org/10.3168/jds.2013-7561

Licina V, M. F. Aksic, Z. Tomic, I. Trajkovic, S. A. Mladenovic, M. Marjanovic, & J. Rinklebe. 2017. Bioassessment of heavy metals in the surface soil layer of an opencast mine aimed for its rehabilitation. Journal of Environmental Management 186: 240-252. https://doi.org/10.1016/j.jenvman.2016.06.050

Lim, J. T., Y. Q. Tan, L. Valeri, J. Lee, P. P Geok, S. E. Chia, C. N. Ong, & W. J Seow. 2019. Association between serum heavy metals and prostate cancer risk - A multiple metal analysis. Environmental International 132: 1-10 https://doi.org/10.1016/j.envint.2019.105109

Liu, S., R. Zhang, R. Kang, J. Meng, & C. Ao. 2016. Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets. Anim. Nut. https://doi.org/10.1016/j.aninu.2016.08.008

Marchi, F. E., F. J. F. Figueiroa., G. T. Santos., W. B. R. Santos. D. C. S. Kazama, A. F. Branco. L. C. Leite, & J. C. Damasceno. 2013. Intake, digestibility, and ruminal parameters of dairy cows fed pelleted diets and treated with lignosulfonate-containing sunflower seeds. R. Bras. Zootec. 42: 656-663. https://doi.org/10.1590/S1516-35982013000900008

Maneerat, W., S. Prasanpanich, P. Kongmun, W. Sinsmut, & S. Tumwasorn. 2013. Effect of feeding total mixed fiber on feed intake and milk production in mid-lactating dairy cows. Kasetsart J. (Nat. Sci.). 47: 571-580.

Manuelian, C. L., M. Penasa, G. Visentin, A. Zidi, M. Cassandro, & M. D. Marchi. 2018. Mineral composition of cow milk from multibreed herds. Anim. Sci. J. 89: 1622-1627. https://doi.org/10.1111/asj.13095

Martono, S., W. Negara, R.A. Gopar, & M. N. Rofiq. 2016. Combination effect of feed supplements on milk yield and milk quality of dairy cattle. J. Adv. Agri. Tech. 3: 136-139. https://doi.org/10.18178/joaat.3.2.136-139

Miller, M. D., J. S. Lanier, S. K. Kvidera, H. M. Dann, C. S. Ballard, & R. J. Grant. 2019. Evaluation of source of corn silage and trace minerals on lactational performance and total-tract nutrient digestibility in Holstein cows. J. Dairy Sci. 103: 1-14. https://doi.org/10.3168/jds.2019-17716

Montana, J. R. G., E. Senis, A. J. Alonso, M. E. Alonso, M. P. Alonso, & J. C. Dominguez. 2019. Some toxic metals (Al, As, Mo, Hg) from cow’s milk raised in a possibly contaminated area by different sources. Environ. Sci. Pollut. Res. 26: 28909-28918. https://doi.org/10.1007/s11356-019-06036-7

Mwendia, S. N., C. M. Mwungu, S. K. Ng’ang’ a, D. Njenga, & A. Notenbaert. 2018. Effect of feeding oat and vetch forages on milk production and quality in smallholder dairy farms in Central Kenya. Trop. Anim. Health Prod. 50: 1051-1057. https://doi.org/10.1007/s11250-018-1529-3

NRC (National Research Council). 2001. Nutrient Requirement of Dairy Cattle. 7th Ed. Revised edition: Natl. Acad. Sci, Washington.

Nichols, K., A. Bannink, S. Pacheco, H. J. Van Valenberg, J. Dijkstra, & H. Van Laar. 2018. Feed and nitrogen efficiency are affected differently, but milk lactose production is stimulated equally when isoenergetic protein and fat is supplemented in lactating dairy cow diets. J. Dairy Sci. 1010: 7857-7870. https://doi.org/10.3168/jds.2017-14276

Nogalska, A., M. Momot, M.Sobczuk-Szul, P. Pogorzelska-Przybylek, & Z. Nogalski. 2017. Calcium and magnesium content in the milk of high yielding cows. J. Elem. 22: 809-815. https://doi.org/10.5601/jelem.2016.21.4.1365

Ogabiela, E. E., U. U. Udiba, O. B. Adesina, C. Hammuel, F. A. Ade-Ajayi, G. G. Yebpella, U. J. Mmereole, & M. Abdullahi. 2011. Assessment of metal levels in fresh milk from cattle grazed around Challawa Industrial Estate of Kano, Nigeria. J. Basic. Appl. Sci. Res. 1: 533-538.

Ogut, S., H. S. Canbay, & H. Uludag. 2016. Effect of environmental factors on heavy metal content of raw milk. Akademik Gida. 14: 105-110.

Olijhoek, D. W., P. Lovendahl, J. Lassen, A. L. F. Hellwing, J. K. Hoglund, M. R. Weisbjerg, S. J. Noel, F. McLean, O. Hojberg, & P.Lund. 2018. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. J. Dairy Sci. 101: 9926-9940. https://doi.org/10.3168/jds.2017-14278

Patricia, C. A., H. B. Antonio, D. M. Belisario, & M. P. Felipe. 2015. Variation in milk yield and composition in cows in tropic of Veracruz State, Mexico. Res. Opim. Anim. Vet. Sci. 1: 34-37.

Rabiee, A. R., K. Breinhild, W. Scott, H. M.Golder, E. Block, & I.J. Lean. 2012. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. J. Dairy Sci: 95: 3225-3247. https://doi.org/10.3168/jds.2011-4895

Ramin, M., M. Franco, M. Y. Roleda, I. M. Aasen, M. Hetta, & H. Steinshamn. 2019. In vitro evaluation of utilizable crude protein and methane production for diet in which grass silage was replaced by different levels and fractions of extracted seaweed proteins. Anim. Feed Sci. Technol. 255: 1-12. https://doi.org/10.1016/j.anifeedsci.2019.114225

Ramli, N., M. Ridla, T. Toharmat, & L. Abdullah. 2009. Milk yield and milk quality of dairy cattle fed silage complete ration based on selected vegetable waste as fibre sources. J. Indon. Trop. Anim. Agric. 34: 36-41.

Reynolds, M. A., T.M. Brown-Brandl, J. V. Judy, K. J. Herrick, K. E. Watson, & P.J. Kononoff. 2018. Use of indirect calorimetry to evaluate utilization of energy in lactating Jersey dairy cattle consuming common coproducts. J. Dairy Sci. 102: 320-333. https://doi.org/10.3168/jds.2018-154471

Rodney, R. M., P. Celi, W. Scott, K. Breinhild & I. J. Lean. 2015. Effects of dietary fat on fertility of dairy cattle: A meta-analysis and meta-regression. J. Dairy Sci. 98: 5601-9528. https://doi.org/10.3168/jds.2015-9528

Safdar, A. H. S. & N. M. Kor. 2014. Trace mineral requirements for dairy cattle. Int. J. Adv. Biom. Res. 2: 427-432.

Schonewille, J. 2013. Magnesium in dairy cow nutrition: an overview. Plant Soil 368: 167-178. https://doi.org/10.1007/s11104-013-1665-5

Soekomo, C. B., E. Nkurang, D. P. Rousseau, & P. N Lens. 2011. Fate of heavy metals in an urban natural wetland: the Nyabugogo Swamp (Rwanda). Water Air Soil Pollut. 214: 321-333. https://doi.org/10.1007/s11270-010-0426-9

Sousa, D. O., B. D. S. Mesquita, A. V. Pires, M. H. D. A. Santana, & L. F. P. Silva. 2017. Effect of fibre digestibility and level of roughage on performance and rumen fermentation of finishing beef cattle. Trop. Anim. Health. Prod. 49: 1503-1510. https://doi.org/10.1007/s11250-017-1353-1

Sucak, M. G, U. Serbester, & M. Gorgulu. 2017. Effect of dietary starch and crude protein levels on milk production and composition of dairy cows fed high concentrate diet. Turkish J. Agri-Food Sci. Tech. 5: 563-567. https://doi.org/10.24925/turjaf.v5i6.563-567.718

Steel, R. G. D. & J. H Torrie. 1995. Principles and Procedures of Statistics. 2nd Ed. Translated by Bambang S. PT. Gramedia Pustaka Utama, Jakarta.

Stocco, G., A. Summer, M. Malacarne, A. Cecchinato, & G. Bittante. 2019. Detailed macro-and micromineral profile of milk: effects of herd productivity, parity, and stage of lactation of cows of 6 dairy and dual-purpose breeds. J. Dairy Sci. 102: 9727-9739. https://doi.org/10.3168/jds.2019-16834

Tahir, M., M. Iqbal, M. Abbas, M. A. Abbas, M. A. Tahir, A. Nazir, D. N. Iqbal, Q. Kanwal, F. Hassan, & U. Younas. 2017. Comparative study of heavy metals distribution in soil, forage, blood, and milk. Acta Ecologica Silica. 37: 207-212. https://doi.org/10.1016/j.chnaes.2016.10.007

Toth, B., A. V. Biljon & M. Labuschagne. 2020. Influence of low soil nitrogen and phosphorus on gluten polymeric and monomeric protein distribution in two high-quality spring wheat cultivars. Journal of Cereal Science 91: 1-6. https://doi.org/10.1016/j.jcs.2019.102867

Tyasi, T. L., C. P. Tlabela, & M. Gzasheka. 2015. Assessing the effect of nutrition on milk composition of dairy cows: A review. Int J. Curr. Sci. 17: 56-63.

Wang, H., Y. Liu, Z. Qi, S. Wang, S. Liu, X. Li, H. Wang, X. Wang, X. Xia, & X. Zhu. 2014. The estimation of soil trace elements distribution and soil-plant-animal continuum in relation to trace elements status of sheep in Huangcheng area of Qilian mountain grassland, China. J Integrative Agriculture 13: 140-147. https://doi.org/10.1016/S2095-3119(13)60504-3

Wang, A., S. E. Duncan, K. F. Knowlton, W. K. Ray, & A. M. Dietrich. 2016. Milk protein composition and stability changes affected by iron in water sources. J. Dairy Sci. 99: 1-14. https://doi.org/10.3168/jds.2015-10481

Wardeh, M. F. 1981. Models For Estimating Energy and Protein Utilization For Feeds. Utah State Univ Pr, Utah.

Unakitan, G., N. Kumbar. 2019. Analysis of feed conversion efficiency in dairy cattle farms in Thrace Region, Turkey. Energy 176: 589-595. https://doi.org/10.1016/j.energy.2019.04.031

Useni, B. A., C. J. C. Muller, & C. W. Cruywagen. 2018. Pre and postpartum effects of starch and fat in dairy cows: A review. S. Afr. J. Anim. Sci. 48: 413-426. https://doi.org/10.4314/sajas.v48i3.2

Utami, K. B., L. E. Radiati, & P. Surjowardojo. 2014. Kinerja peternak sapi perah PFH (Studi kasus pada anggota Koperasi Agro Niaga) di Kecamatan Jabung Kabupaten Malang. Jurnal Ilmu-Ilmu Peternakan. 24: 56-66.

Zanton, G. I. 2016. Analysis of production responses to changing crude protein levels in lactating dairy cow diets when evaluated in continuous or change-over experimental designs. J. Dairy Sci. 99: 4398-4410. https://doi.org/10.3168/jds.2015-10438

Zhou, X., N. Zheng, C. Su, J. Wang, & H. Soyeurt. 2019. Relationships between Pb, As, Cr, and Cd in individual cattle milk and milk composition and heavy metal contents in water, silage, and soil. Environmental Pollution 255: 1-26. https://doi.org/10.1016/j.envpol.2019.113322

Published
2020-12-01
How to Cite
Harmini, H., Evvyernie, D., Karti, P. D. M. H., & Widiawati, Y. (2020). Evaluation of Mineral Contents in Milk of Dairy Cattle Fed Elephant Grass Planted at Ex-Coal Mining Land. Tropical Animal Science Journal, 43(4), 322-330. https://doi.org/10.5398/tasj.2020.43.4.322