CARBON STOCK ESTIMATION AT SEAGRASS MEADOWS IN NYAMUK ISLAND AND KEMUJAN ISLAND, NATIONAL MARINE RESERVE KARIMUNJAWA, JEPARA

  • Fajar Bayu Aji Program Studi Manajemen Sumberdaya Perairan, Departemen Sumberdaya Akuatik, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro
  • Sigit Febrianto Departemen Sumberdaya Akuatik, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro
  • Norma Afiati Departemen Sumberdaya Akuatik, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro
Keywords: biomass, carbon, Karimunjawa, seagrass, sediment

Abstract

Blue carbon is carbon absorbed and stored as biomass in coastal ecosystems. Seagrass meadows have the primary function of storing carbon. This study aims to determine the percentage of organic carbon content in the biomass and in the seagrass sediments, as well as total carbon stock in part of the National Marine Reserve Karimunjawa.The density and coverage of seagrass were made by means of quadrat transect and carbon content analysis was performed using Loss on Ignition (LoI) method. The highest average of organic carbon content percentage on belowground biomass was 33.13%, whereas from the aboveground biomass was 29.19% and in the sediment were 2.75% and 2.82% at Nyamuk Island (Station 1). Belowground biomass has higher carbon content than the aboveground, except for genus Halophila. Percentage of carbon weight in the sediment proved to be the highest contribution to the total carbon stock in seagrass meadows, i.e., 97.92-98.49%. The highest carbon weight was also established in Nyamuk Island,  i.e.,13248.29 tons C/ha. Whereas, Pokemon beach in Kemujan Island (Station 2) fixing the highest carbon stock, i.e., 83003.14 tons C in its 7.68 ha seagrass area.

Downloads

Download data is not yet available.

References

Afiati, N. 2007. Ecological aspects of epiphytes on the seagrass (Thalassia sp.) of Jepara, Central Java. TORANI, (17)1: 33-42.

Alcoverro, T., M. Manzarena, & J. Romero. 2001. Annual metabolic carbon balance of the seagrass Posidonia oceanica: The importantance of carbohydrate reserves. Marine Ecology Progress Series, 211: 105-116. http://doi.org/10.3354/meps211105

Alongi, D.M., D. Murdiyaso, J.W. Fourqurean, J.B. Kauffman, A. Hutahean, S. Crooks, C.E. Lovelock, J. Howard, D. Herr, M.Fortes, E. Pidgeon, & T. Wagey. 2016. Indonesia’s blue carbon: A globally significant and vulnerable sink for seagrass and mangrove carbon. Wetland Ecol Manage, 24: 3-13. https://doi.org/10.1007/s11273-015-9446-y

Ansari, R.A., T. Apriadi, & A.D. Syakti. 2020. Stok karbon lamun Thallasia hemprichii dan sedimen Pulau Bintan Kepulauan Riau. J. Ruaya : J. Penelitian dan Kajian Ilmu Perikanan dan Kelautan, 8(1): 32-37. http://doi.org/10.29406/jr.v8i1.1478

Armitage, A.R. & J.W. Fourqurean. 2016. Carbon storage in seagrass soils: long-term nutrient history exceeds the effect of near-term nutrient enrichment. Biogeosciences, 13: 313-212. https://doi.org/10.5194/bg-13-313-2016

Asirah, N., C. Rani, & M. Lanuru. 2019. Pengaruh keterbukaan gelombang dan zona pasang surut terhadap biomassa lamun di Perairan Pulau Barrangcaddi. Universitas Hassanudin Makassar. Prosiding Simposium Nasional Kelautan dan Perikanan VI. 279-288 pp.

Badan Standar Nasional (SNI 7724). 2011. Pengukuran dan perhitungan cada-ngan karbon-pengukuran lapangan untuk penaksiran cadangan karbon hutan (ground based forest carbon accounting). Badan Standar Nasional. Jakarta. 16 p.

Campbell, J.E., E.A. Lacey, R.A. Decker, S. Crocks, & J.W. Fourqurean. 2015. Carbon storage in seagrass beds in Abu Dhabi, United Arab Emirates. Estuaries and Coasts, 38: 242-251. https://doi.org/10.1007/s12237-014-9802-9

Carpenter, G.A., M.N. Gjaja, S. Gopal, & C.E. Woodcock. 1996. ART neural networks for remote sensing: vegetation classification from Landsat TM and terrain data. Geoscienceand Remote Sensing Symposium, 1996. IGARSS '96. ‘Remote Sensing for a Sustainable Future’, International vol. 521, 529–531 pp.

Chen, G., M.H. Azkab, G.L. Chmura, S. Chen, P. Sastrosuwondo, Z. Ma, I.W.E. Dharmawan, X. Yin, & B. Chen. 2017. Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 7: 42406:1-10. http://doi.org/10.1038/srep42406

Duarte, C.M. 1990. Seagrass nutrient content. Marine Ecology Progress, Series, 67: 201-207. https://doi.org/10.3354/meps067201

Duarte, C.M., N. Marbà, E., Gacia, J. W. Fourqurean, J. Beggins, C. Barrón, & E.T. Apostolaki. 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadow. Global Biogeochemical Cycles, 24(4): 1-8. https://doi.org/10.1029/2010GB003793

Duarte, C.M., H. Kennedy, N. Marba, & I. Hendriks. 2013. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean and Costal Management, 83: 32-38. https://doi.org/10.1016/j.ocecoaman.2011.09.001

Duarte, C.M & D.K. Jensen. 2017. Export of seagrass meadows contribution to marine carbon sequestration. Frontiers in Marine Science, 4(13): 1-7. https://doi.org/10.3389/fmars.2017.00013

Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marba, M. Holmer, M.A. Mateo, E. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery, & O. Serrano. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5: 505-509. https://doi.org/10.1038/ngeo1477

Ganefiani, A.S. Suryanti, & N. Latifah. 2019. Potensi padang lamun sebagai penyerap karbon di Perairan Pulau Karimunjawa, Taman Nasional Karimunjawa. Saintek Perikanan: Indonesian J. of Fisheries Science and Technology, 14(2): 115-122. https://doi.org/10.14710/ijfst.14.2.115-122

Graha, Y.I., I.W. Arthana, & I.W.G.A Karang. 2016. Simpanan karbon padang lamun di kawasan Pantai Sanur, Kota Denpasar. Ecotrophic, 10(1): 46-53. https://doi.org/10.24843/EJES.2016.v10.i01.p08

Gunawan, J.V., M. Parengkuan, A.J. Wahyudi, & F. Zulpikar. 2019. Estimasi stok karbon pada biomassa lamun di Pulau Semak Daun, Kepulauan Seribu. Oseanologi dan Limnologi di Indonesia, 4(2): 89-99. http://doi.org/10.14203/oldi.2019.v4i2.229

Harimbi, K.A., N. Taufiq-Spj, & I. Riniatsih. 2019. Potensi penyim-panan karbon pada lamun spesies Enhalus acoroides dan Cymodocea serrulata di Perairan Jepara. Buletin Oseanografi Marina, 8(2): 109-115. http://doi.org/10.14710/buloma.v8i2.23657

Hartati, R., A. Djunaidi, Haryadi, & Mujiyanto. 2012. Struktur komunitas padang lamun di Perairan Pulau Kumbang, Kepulauan Karimunjawa. J. Ilmu Kelautan 17(4): 217-225. https://ejournal.undip.ac.id/index.php/ijms/article/download/5136/4660

Hartati, R., I. Pratikno, & T.N. Pratiwi. 2017. Biomassa dan estimasi simpanan karbon pada ekosistem padang lamun di Pulau Menjangan Kecil dan Pulau Sintok, Kepulauan Karimunjawa. Buletin Oseanografi Marina, VI(1): 74-81. https://doi.org/10.14710/buloma.v6i1.15746

Howard, J., S. Hoyt, K. Isesnsee, E. Pidgeon, & M. Telszewski. 2014. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Inter-governmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA. 180 p.

Indriani, A.J., Wahyudi, & D. Yona. 2017. Cadangan karbon di area padang lamun pesisir Pulau Bintan, Kepulaun Riau. Oseanologi dan Limnologi Indonesia, 2(3): 1-11. http://doi.org/10.14203/oldi.2017.v2i3.99

Irawan, A. 2017. Potensi Cadangan dan serapan karbon oleh padang lamun di Bagian Utara dan Timur Pulau Bintan. Oseanologi dan Limnologi di Indonesia, 2(3): 35-48. http://doi.org/10.14203/oldi.2017.v2i3.158

Kauffman, J.B. & D.C. Donato. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper 86. CIFOR, Bogor, Indonesia. 40 p.

Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marba, & J.J. Middelburg. 2010. Seagrass sediment as a global carbon sink: Isotropic constraints. Global Biogeo-chemical Cycles, 24: 1-8. https://doi.org/10.1029/2010GB003848

Laffoley, D. & G. Grimsditch. 2009. The Management of natural coastal carbon sinks. IUCN. Gland, Switzerland. 53 p.

Lanuru, M. 2011. Bottom sediment characteristics affecting the success of seagrass (Enhalus acoroides) transplantation in the westcoast of South Sulawesi (Indonesia). 3rd International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.20 (2011) p: 97-102 © (2011) IACSIT Press, Singapore.

Lasabuda, R. 2013. Pembangunan wilayah pesisir dan lautan dalam perspektif Negara Kepulauan Republik Indonesia. J. Ilmiah Platax, I(2): 92-10. https://doi.org/10.35800/jip.1.2.2013.1251

Lavery, P.S., M.A. Mateo, O. Serrano, & M. Rozaimi. 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem device. PloS ONE, 8(9): 1-12. http://doi.org/10.1371/journal.pone.0073748

Miyajima, T., M. Hori, M. Hamaguchi, H. Shimabukuro, H. Adachi, H. Yamano, & M. Nakaoka. 2015. Geographic Variability in organic carbon stok and accumulation rate in sediments of East and Southeast Asian seagrass meadow. Global Biogeochemical Cycles, 29: 397-415. https://doi.org/10.1002/2014GB004979

Nellemann, C., E. Corcorn, C.M. Duarte, L. Valdés, C. DeYoung, L. Fonseca, & G. Grimsditch, 2009. Blue carbon: A rapid response assessment. United Nations Environment Programme. Birkeland. 78 p.

Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks,W.A. Jenkins, S. Sifleet, C. Craft, J.W. Fourqurean, J.B. Kauffman, N. Marbà, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, & A. Baldera. 2012. Estimating global "Blue Carbon" emissions from conversion and degradation of vegetated coastal ecosystems. PloS ONE, 7(9): 1-7. http://doi.org/10.1371/journal.pone.0043542

Roelfsema, C.M., M. Lyons, E.M. Kovacs, P. Maxwell, M.I. Saunders, J.S. Villareal, & S.R. Phinn. 2014. Multi-temporal mapping of seagrass cover, species and biomass: a semi-automated object based image analysis approach. Remote Sensing of Environment, 150: 172-187. https://doi.org/10.1016/j.rse.2014.05.001

Rustam, A., T.L. Kepel, R.N. Afiati, H.L. Salim, M. Astrid, A. Daulat, P. Mangindaan, N. Sudirman, Y. Puspitaningsih, D. Dwiyanti, & A. Hutahean. 2014. Peran ekosistem lamun sebagai blue carbon dalam mitigasi perubahan iklim, studi kasus Tanjung Lesung, Banten. J. Segara, 10(2): 107-117. http://doi.org/10.15578/segara.v10i2.20

Rustam, A, N.S. Adi, A. Daulat, W. Kiswara, D.S. Yusup, & R.A. Rappe. 2019. Pedoman pengukuran karbon di ekosistem padang lamun. ITB Press. Bandung. 90 p.

Septiani, E.F., A. Ghofar, & S. Febrianto. 2018. Pemetaan karbon di padang lamun Pantai Prawean Bandengan Jepara. Majalah Ilmiah Globe. 20(2): 117-124. http://doi.org/10.24895/MIG.2018.20-2.827

Sulaeman, Suprapto, & Eviati. 2005. Petunjuk teknis analisis tanah, tanaman, air dan pupuk. Balai Penelitian Tanah. Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian. Bogor. 136 p.

Supriadi, R.F. Kaswadji, D.G. Bengen, & M. Hutomo. 2014. Carbon stock of seagrass community in Barrang-lompo Island, Makassar. J. Ilmu Kelautan, 19(1): 1–10. https://doi.org/10.14710/ik.ijms.19.1.1-10.

Thornton, M.W., P.M. Atkinson, & D.A. Holland. 2006. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using superresolution pixel-swapping. Int. J. Remote Sens., 27, 473–491. https://doi.org/10.1080/01431160500207088

Wicaksono, S.G., Widianingsih, & S.T. Hartati. 2012. Struktur vegetasi dan kerapatan jenis lamun di Perairan Kepulauan Karimunjawa Kabupaten Jepara. J. of Marine Research, 1(2): 1-7. https://doi.org/10.14710/jmr.v1i2.2016

Wood, E.M. 1987. Subtidal ecology. Edward Arnold. London. 125 p.

Published
2020-12-31