GENETIC STRUCTURE POPULATIONS SKIPJACK, Katsuwonus pelamis (Linneaus, 1758) IN NORTH MALUKU SEA, INDONESIA

  • Nebuchadnezzar Akbar Ilmu Kelautan, FPIK, Universitas Khairun, Ternate
  • Rusmawati Labenua Manajemen Sumberdaya Perairan, FPIK, Universitas Khairun, Ternate
Keywords: conservation, genetic, North Maluku, skipjack

Abstract

Genetic is key substantial approach conservation, managament and sustainability. This study aims to genetic structure populations Skipjack tuna in North Maluku Sea. Samples collection in Morotai Island (n=10), Central Halmahera District, Weda (n=10) dan South  Halmahera District, Bacan, (n=10) and secondary data (n=4) in March-May 2018. Molecular analysis through stages extraction, PCR, electrophoresis and sequencing DNA. DNA sequences analysis used MEGA 5 (Genetic distance and phylogenetic) and arlequin (Fixation index). The result found that fragment length 546 (base pairs) in control mitocondrial DNA. Genetic distance analysis Skipjact tuna population based on primary (North Maluku) and secondary data (Sulu-Celebes and South China Sea, Bali, Indian coast, Kyushu Island Japan) show close genetic 0.037-0.056. Fixation indices (Fst) analysis value 0.801-0.936  the show that weak genetic differentiation between populations. High genetic flow between populations based on genetic distance and Fst. The result show that genetic distance and Fst show that genetic structure populations Skipjack tuna in North Maluku Sea undistrubed.  The Skipjack tuna data obtained can uses data base to preserve and sustainability fish resource.

Downloads

Download data is not yet available.

Author Biography

Nebuchadnezzar Akbar, Ilmu Kelautan, FPIK, Universitas Khairun, Ternate

Fisheries and marine faculty

References

Akbar, N., N.P. Zamani, & H.H. Madduppa. 2014. Keragaman genetik ikan tuna sirip kuning (Thunnus albacares) dari dua populasi di Laut Maluku, Indonesia. J. Depik, 3(1): 65-73. http://doi.org/10.13170/depik.3.1.1304

Akbar, N., M. Aris, M. Irfan, I. Tahir, A. Baksir, Surahman, H.H. Madduppa, & R. Kotta. 2018. Filogenetik ikan tuna (Thunnus spp.) di Perairan Maluku Utara, Indonesia. J. Iktiologi Indonesia, 18(1): 1-11. http://doi.org/10.32491/jii.v18i1.37

Akbar, N. & R. Labenua. 2018. Keragaman genetik ikan cakalang (Katsuwonus pelamis ) di Perairan Laut Maluku Utara. J. Depik, 7(2): 164-176. http://doi.org/10.13170/depik.7.2.11156

Aris, M., N. Akbar, & R. Labenua. 2017. Genetic and phylogenetic variations of yellowfin tuna (Thunnus albacares) as a basis for sustainable fishery resources management in North Moluccas. International J. Pharma Bio Science, 8(4): 419-426. http://doi.org/10.22376/ijpbs.2017.8.4.b419-426

Atmadipoera, S.A. & G.I. Mubaraq. 2016. Struktur dan variabilitas arlindo di laut Sulawesi. J. Kelautan Nasional, 11(3): 159-174. http://doi.org/10.15578/jkn.v11i3.6116

Bahagiawati, D.W., Buchari, Nurindah, H.H. Rizjaani, D.W. Utami, B. Sahari, & A. Sari. 2006. Struktur populasi Trichogrammatoidea armigera, parasitoid telur Helicoverpa armigera, berdasarkan analisis RAPD-PCR. J. AgroBiogen, 2(2): 52-58. http://doi.org/10.21082/jbio.v2n2.2006.p5259

Bahagiawati, D.W., Utami, & D. Buchari. 2010. Pengelompokan dan struktur populasi parasitoid telur Trichogrammatoidea armigera pada telur Helicoverpa armigera pada jagung berdasarkan karakter molekuler. J. Entomologi Indonesia, 7(1): 54-65. http://doi.org/10.5994/jei.7.1.54

Bahri, S., A.S. Atmadipoera, & H.H. Madduppa. 2017. Keragaman genetik penyu lekang Lepidochelys olivacea dengan pola arus di teluk Cendrawasih, Papua. J. Ilmu dan Teknologi Kelautan Tropis, 9(2): 747-760. http://doi.org/10.29244/jitkt.v9i2.19307

Chiang, H.C., C.C. Hsu, H.D. Lin, G.C. Ma, T.Y. Chiang, & H.Y. Yang. 2006. Population structure of bigeye tuna (Thunnus obesus) in the South China Sea, Philippine Sea and western Pacific Ocean inferred from mitochondrial DNA. Fisheries Research, 79(1): 219-225. http://doi.org/10.1016/j.fishres.2005.11.026

Chiang, H.C., C.C. Hsu, G.C.C. Wu, S.K. Chang, & H.Y. Yang. 2008. Population structure of bigeye tuna (Thunnus Obesus) in the Indian Ocean inferred from mitochondrial DNA. Fisheries Research, 90(1): 305-312. http://doi.org/10.1016/j.fishres.2007.11.006

Chow, S. & H. Kishino. 1995. Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): inconsistent implications from morphology, nuclear and mitochondrial genomes. J. of Moleculer Evolution, 41(6): 741-748. http://doi.org/10.1007/BF00350321

Chow, S. & H. Ushiama. 1995. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Marine Biology, 123(1): 39-45. http://doi.org/10.1007/BF0035021

Dammannagoda, S.T., D.A. Hurwood, & P.B. Mather. 2011. Genetic analysis reveals two stocks of skipjack tuna (Katsuwonus pelamis) in the northwestern Indian Ocean. Canadian J. of Fisheries and Aquatic Sciences, 68(2): 210-223. http://doi.org/10.1139/F10-136

Ely, B., J. Vinas, J.R.A. Bremer, D. Black, L. Lucas, K. Covello, A.V. Labrie, & E. Thelen. 2005. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evolutionary Biology, 5(19): 1-9. http://doi.org/10.1186/1471-2148-5-19

Excoffier, L. & H.E.L. Lischer. 2010. Arlequin suite ver 3.5; a new series of program to perform population genetik analysis under linux and windows. Molecular Ecology Resources, 10(3): 564-56. http://doi.org/10.1111/j.1755-0988.2010.02847.x

Fakhri, F., I. Narayani, & I.G.N.K. Mahardika. 2015. Keragaman genetik ikan cakalang (Katsuwonus Pelamis) dari Kabupaten Jembrana dan Karangasem, Bali. J. Biologi, 19(1): 11-14. http://ojs.unud.ac.id/index.php/BIO/article/view/16493

Gigentika, S., S.H. Wisudo, & Mustaruddin. 2014. Strategi pengembangan perikanan cakalang di Kabupaten Lombok Timur Provinsi Nusa Tenggara Barat. Marine Fisheries, 5(1): 27-40. http://doi.org/10.29244/jmf.5.1.27-40

Gordon, A.L. & R.A. Fine. 1996. Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature, 379(6561): 146-149. http://doi.org/10.1038/379146a0

Graves, J.E., S.D. Ferris, & A.E. Dizon. 1984. Close genetic similarity of Atlantic and Pacific skipjack tuna (Katsuwonus pelamis) demonstrated with restriction endonuclease analysis of mitochondrial DNA. Marine Biology, 79(3): 315-319. http://doi.org/10.1007/BF00393264

Jackson, A.M., M.V. Ambariyanto, Erdmann, A.H.A. Toha, L.A. Stevens, & P.H. Barber. 2014. Phylogeography of commercial tuna and mackerel in the Indonesian Archipelago. Bulletin Marine Science, 90(1): 471–492. http://doi.org/10.5343/bms.2012.1097

Jamal, M., Hasrun, & Ernaningsih. 2014. Tingkat pemanfaatan dan estimasi potensi ikan cakalang (Katsuwonus pelamis) di kawasan teluk Bone. Torani, 24(2): 20-28. http://doi.org/10.35911/torani.v24i2.225

Johnson, M.G., Y.D. Mgaya, & Y.W. Shaghude. 2015. Mitochondrial DNA analysis reveals a single stocks of frigate tuna Auxis thazard (Lacepède, 1800) in the northern coastal waters of Tanzania. Indian Ocean Tuna Commission-2015-WPNT05-16. 12 p.

Lee, W.J., J. Conroy, W.H. Howell, & T.D. Kocher. 1995. Structure and evolution of teleost mitochondrial control regions. Moleculer Evolution, 41(1): 54-66. http://doi.org/10.1007/BF00174041

Ma’mun, A., A. Priatna, Suwarso, & M. Natsir. 2018. Potensi dan distribusi spasial ikan demersal di Laut Jawa (WPPNRI-712) dengan menggunakan teknoogi hidroakustik. J. Ilmu dan Teknologi Kelautan Tropis, 10(2): 489-500. http://doi.org/1029244/jitkt.v10i2.21549

Menezes, M.R., G. Kumar, & S.P. Kunal. 2012. Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D-loop region. J. Fish Biology, 80(6): 2198-2212. http://doi.org/10.1111/j.1095-8649.2012.03270.x

Michels, E., K. Cottenie, L. Neys, K. De Gelas, P. Coppin, & L. De Meester. 2001. Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology, 10(8): 1929-1938. http://doi.org/10.1046/j.1365-294X.2001.01340.x

Permana, G.N., J.H. Hutapea, Haryanti, & S.B.M. Sembiring. 2007. Variasi genetik ikan tuna sirip kuning (Thunnus albaceras) dengan analisis elektroforesis allozyme dan mtDNA. J. Riset Akuakultur, 2(1): 41-50. http://doi.org/10.15578/jra.2.1.2007.41-50

Sanger, F., S. Nicklen, & A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. National Academical Science, United Stated of America, 74(12): 5463-5467. http://doi.org/10.1073/pnas.74.12.5463

Shizuka, D. & B.E. Lyon. 2008. Improving the reliability of molecular sexing using a W-specific marker. Molecular Ecology Resources, 8(6): 1249-1253. http://doi.org/10.1111/j.1755-0998.2008.02342.x

Soewardi, K. & Suwarso. 2006. Variasi geografik dalam struktur genetik populasi ikan kakap merah, Lutjanus malabaricus (Lutjanidae) dan interaksi lingkungan di laut Jawa. J. Ilmu-Ilmu Perairan dan Perikanan Indonesia, 13(1): 69-75.

Suman A., H.E. Irianto, K. Amri, & B. Nugraha. 2013. Population structure and reproduction of bigeye tuna (Thunnus Obesus) in Indian Ocean at western part of Sumatera and southern part of Java and Nusa Tenggara. Indian Ocean Tuna Commission, 8 oktober 2013. 1-14 pp.

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, & S. Kumar. 2011. Mega 5: molecular evolutionary genetics analysis using maximum likehood, evolutionary distance and maximum parsimony method. Moleculer Biology Evolution, 28(10): 2731-2739. http://doi.org/10.1093/molbev/msr121

Toha, A.H.A., R. Binur, Suhaemi, Lutfi, L. Hakim, N. Widodo, & S.B. Sumitro.2014. Genetic aspects of the commercially used sea urchin Tripneustes gratilla. A review. J. of Biological Researches, 20(2): 12-17. http://doi.org/10.23869/bphjr.20.1.20143

Toatubun, N., J. Wenno, & I.L. Labaro. 2015. Struktur populasi ikan cakalang hasil tangkapan pukat cincin yang didaratkan di pelabuhan perikanan pantai Tumumpa Kota Manado. J. Ilmu dan Teknologi Perikanan Tangkap, 2(2): 73-77. http://doi.org/10.35800/jitpt.2.2.2015.9234

Walsh, P.S., D.A. Metzger, & R. Higuchi. 1991. Chelex-100 as a medium for simple extraction of DNA for PCR based typing from forensic material. Biotechniques, 10(4): 506-513. http://doi.org/10.2144/000114018

Wigati, E., Sutarno, & Haryanti. 2003. Variasi genetik ikan anggoli (Pristipomoides multidens) berdasarkan pola pita allozim. Biodiversitas, 4(2): 73-79. http://doi.org/10.13057/biodiv/d040201.

Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, & S.V. Tingey. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22): 6531-6535. http://doi.org/10.1093/nar/18.22.6531

Xiao, M., P.M. Gordon, A. Phong, C. Ha, T.F. Chan, D. Cai, P.R. Selvin, & Y. Kwok. 2007. Determination of haplotype for single DNA molecules: a method for single molecules barcoding. Human Mutation, 28(9): 913-921. http://doi.org.10.1002/humu.20528

Published
2020-08-31
How to Cite
AkbarN., & LabenuaR. (2020). GENETIC STRUCTURE POPULATIONS SKIPJACK, Katsuwonus pelamis (Linneaus, 1758) IN NORTH MALUKU SEA, INDONESIA. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(2), 407-419. https://doi.org/10.29244/jitkt.v12i2.24274