• Mutiara Utami Program Studi Magister Ilmu Pangan, Sekolah Pascasarjana, IPB University, Bogor
  • Christofora Hanny Wijaya Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
  • Darda Efendi Departemen Agronomi dan Hortikultura, Fakultas Pertanian, IPB University, Bogor
  • Dede Robiatul Adawiyah Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
Keywords: gedong mango, physicochemical characteristic, rate-all-that-apply, sensory profile, SPME


Mangoes of Gedong variety (Mangifera indica L. var. gedong) is one of the exported commodities from Indonesia. Half mature mangoes of this type are called gedong mangoes, whereas the full ripe mangoes are called gedong gincu mango. This research aimed to determine the physicochemical charac-teristics, sensory attributes and volatile compounds of the above two mango types. The results showed that gedong mangoes had a lower pH value, less total soluble solid, harder texture, and the skin color had a lower intensity of lightness, redness, and yellowness as compared to gedong gincu mango. The sensory analysis using rate-all-that-apply (RATA) method showed that attributes of color, fibrous, aroma (fruity, caramel, cooked, green, fermented, floral, sweet), taste (sweet, sour), melting, firmness, juiciness and astringency were significantly different between gedong and gedong gincu mango. The overall sensory of gedong gincu mangoes was more preferred by the panelists with the hedonic score of 6.20±0.09 (6= like) while that of gedong mango was 5.37±0.09 (5= slightly like). The sensory profiles of both mangoes were supported by the analysis of their volatile compounds. The gedong mango had predominantly green type of volatiles aroma while the gedong gincu was dominated by the fruity sweet ones. The sensory acceptability of gedong gincu mango was significantly higher rather than that of gedong mango.


[AOAC] Association of Official Analytical Chemists. 2012. Official Method 932.12. Solids (Soluble) in Fruits and Fruit Products. Chapter 37. 7. Offi-cial Methods of Analysis of AOAC International 19th ed, Volume II, Latimer, GW (Editor). AOAC International Maryland, USA.

[AOAC] Association of Official Analytical Chemists. 2012. Official Method 942.15. Acidity (Titrat-able) of Fruits Products. Chapter 37. 10. Official Methods of Analysis of AOAC International 19th ed, Volume II, Latimer, GW (Editor). AOAC International Maryland, USA.

Ares G, Bruzzone F, Vidal L, Cadena RS, Gimenez A, Pineau B, Hunter DC, Paisley AG, Jaeger SR. 2014. Evaluation of a rating-based variant of check-all-that-apply questions: Rate-all-that-apply (RATA). Food Qual Prefer 36: 87-95. DOI: 10.1016/j.foodqual.2014.03.006.

Batista-Silva WB, Nascimento VL, Medeiros DB, Nune-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. 2018. Modifications in organic acid profiles during fruit development and ripening: Corre-lation or causation?. Front Plant Sci 9: 1-20. DOI: 10.3389/ fpls.2018.01689.

Bonneau A, Boulanger R, Lebrun M, Maraval I, Gunata Z. 2016. Aroma compounds in fresh and dried mango fruit (Mangifera indica L. cv. Kent): Impact of drying on volatile composition. Int J Food Sci Tech 51: 789-800. DOI: 10.1111/ ijfs.13038.

Christ B, Hörtensteiner S. 2013. Mechanism and significance of chlorophyll breakdown. J Plant Growth Regul 33: 4-20: DOI: 10.1007/s00344-013-9392-y.

Disperta. 2016. Standar Operasional Prosedur Mangga Gedong Gincu Off Season Kabupaten Majalengka, Cirebon dan Indramayu. Pemerin-tah Provinsi Jawa Barat Dinas Pertanian Ta-naman Pangan. Bandung.

Doke ND, Dhemre JK, Khalates SM. 2018. Role of ethylene on ripening of Kesar mango fruits. Int J Chem Stud 6: 170-174.

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumu-lation in fruit cells. J Exp Bot 64: 1451-1469. DOI: 10.1093/jxb/ert035.

Fahri N, Purwanto YA, Budiastra IW. 2016. Penggo-longan mangga gedong gincu berdasarkan ra-sio kandungan gula asam menggunakan pre-diksi near infrared spectroscopy. J Keteknikan Pertanian 4: 31-36. DOI: 10.19028/jtep.04.1.31-36.

Grondin E, Sing ASC, Caro Y, Billerbeck GMD, François JM, Petit T. 2015. Physiological and biochemical characteristics of the ethyl tiglate production pathway in the yeast Saprochaete suaveolens. Yeast 32: 57-66.

Hadayanti D, Deliana Y, Natawidjaja RS. 2016. Fak-tor dominan dari preferensi konsumen dalam pemilihan jenis mangga (Mangifera indica): Suatu kasus di supermarket di kota Bandung. J Agrikultura 27: 94-101. DOI: 10.24198/agrikul tura.v27i2.9989.

El Hadi MAM, Zhang F-J, Wu F-F, Zhou C-H, Tao J. 2013. Advances in fruit aroma volatile research: Molecules 18: 8200-8229. DOI: 10.3390/molecu les18078200.

Hossain MdA, Rana MdM, Kimura Y, Roslan HA. 2014. Changes in biochemical characteristics and activities of ripening associated enzymes in mango fruit during the storage at different tem-peratures. Biomed Res Int 2014: 1-11. DOI: 10. 1155/2014/232969.

Leffingwell & Associates. 2008. Odor & flavor detection thresholds in water (in parts per billion). http://www.leffingwell.com/odorthre.htm [21 Januari 2020].

Lalel HJD, Singh Z, Tan SC. 2003. Aroma volatiles production during fruit ripening of ‘Kensington Pride’ mango. Postharvest Biol Tec 27: 323-336. DOI: 10.1016/S0925-5214(02)00117-5.

Lebrun M, Plotto A, Goodner K, Ducamp MN, Baldwin E. 2008. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol Tec 48: 122-131. DOI: 10.1016/j.postharvbio.2007.0 9.010.

Ledeker CN, Suwonsichon S, Chambers DH, Adhi-kari K. 2014. Comparison of sensory attributes in fresh mangoes and heat-treated mango purées prepared from Thai cultivars. LWT-Food Sci Technol 56: 138-144. DOI: 10.1016/j.lwt. 2013.11.011.

Li L, Ma XW, Zhan RL, Wu HX, Yao QS, Xu WT, Luo C, Zhou YG, Liang QZ, Wang SB. 2017. Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries. PLoS One 12: 1-14. DOI: 10.1371/journal.pone.0187487.

Liu H, An K, Su S, Yu Y, Wu J, Xiao G, Xu Y. 2020. Aromatic characterization of mangoes (Mangi-fera indica L.) using solid phase extraction coupled with gas chromatography-mass spec-trometry and olfactometry and sensory analy-ses. Foods 9: 1-20. DOI: 10.3390/foods90100 75.

Munafo JP, Didzbalis J, Schnell RJ, Schieberle P, Steinhaus M. 2014. Characterization of the ma-jor aroma-active compounds in mango (Mangi-fera indica L.) cultivars haden, white alfonso, praya sowoy, royal special, and malindi by application of a comparative aroma extract dilu-tion analysis. J Agric Food Chem 62: 4544-4551. DOI: 10.1021/jf5008743.

Nassur RCMR, González‐Moscoso S, Crisosto GM, Lima LCO, Boas EVB, Crisosto CH. 2015. Describing quality and sensory attributes of 3 mango (Mangifera indica L.) cultivars at 3 ri-peness stages based on firmness. J Food Sci 80: S2055-S2063. DOI: 10.1111/1750-3841.12 989.

Ngamchuachit P, Sivertsen HK, Mitcham EJ, Barrett DM. 2015. Influence of cultivar and ripeness stage at the time of fresh-cut processing on instrumental and sensory qualities of fresh-cut mangos. Postharvest Biol Tech 106: 11-20. DOI: 10.1016/j.postharvbio.2015.03.013.

Pathare PB, Opara UL, Al-Said FA. 2013. Colour measurement and analysis in fresh and pro-cessed foods-a review. Food Bioproc Tech 6: 36-60. DOI: 10.1007/s11947-012-0867-9.

Pino JA. 2012. Odour-active compounds in mango (Mangifera indica L. cv. Corazón). Int J Food Sci Tech 47: 1944-1950. DOI: 10.1111/j.1365-2621.2012.03054.x.

Pino JA, Quijano CE. 2012. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Food Sci Technol 32: 76-83. DOI: 10.1590/S0101-20612012005000006.

San AT, Joyce DC, Hofman PJ, Macnish AJ, Webb RI, Matovic NJ, Williams CM, De Voss JJ, Wong SH, Smyths HE. 2017. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars. Food Chem 221: 613-619. DOI: 10.1016/j.foodchem.2016. 11.130.

Sari HP, Purwanto YA, Budiastra IW. 2016. Pendu-gaan kandungan kimia mangga gedong gincu menggunakan spektroskopi inframerah dekat. Agritech 36: 294-301. DOI: 10.22146/agritech. 16599.

Siriamornpun S, Kaewseejan N. 2017. Quality, bio-active compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Sci Hortic-Amsterdam 221: 33-42. DOI: 10.1016/j.scienta.2017.04.020

Tamura H, Boonbumrung S, Yoshizawa T, Varanya-nond W. 2001. The volatile constituents in the peel and pulp of a green Thai mango, Khieo Sawoei cultivar (Mangifera indica L.). Food Sci Technol Res 7: 72-77. DOI: 10.3136/fstr.7.72.

Wang L-B, Bai J, Yu Z-F. 2016. Difference in vo-latile profile between pericarp tissue and locular gel in tomato fruit. J Integr Agric 15: 2911-2920. DOI: 10.1016/S2095-3119(15)61324-7.

Welke JE, Zanus M, Lazzarotto M, Zini CA. 2014. Quantitative analysis of headspace volatile compounds using comprehensive two-dimen-sional gas chromatography and their contribu-tion to the aroma of Chardonnay wine. Food Res Int 59: 85-99. DOI: 10.1016/j.foodres.2014. 02.002.

White IR, Blake RS, Taylor AJ, Monks PS. 2016. Metabolite profiling of the ripening of mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic com-pounds. Metabolomics 12: 1-11. DOI: 10.1007/ s11306-016-0973-1.

Yannam SK, Shetty PR, Obulum VSR. 2014. Optimi-zation, purification and characterization of poly-galacturonase from mango peel waste pro-duced by Aspergillus foetidus. Food Technol Biotechnol 52: 359-367.

Zainal PW, Purwanto AY, Ahmad U. 2017. Identifi-kasi gejala chilling injury berdasarkan perubah-an pH dan ion leakage pada buah mangga gedong gincu. J Teknologi Pertanian Andalas 21: 16-21. DOI: 10.25077/jtpa.21.1.16-21.2017.

Zhang J-Y, Pan D-L, Jia Z-H, Wang T, Wang G, Guo Z-R. 2018. Chlorophyll, carotenoid and vitamin C metabolism regulation in Actinidia chinensis ‘Hongyang’ outer pericarp during fruit develop-ment. PLoS One 13: 1-17. DOI: 10.1371/ journal.pone.0194835.

Zheng X, Jing G, Liu Y, Jiang T, Jiang Y, Li J. 2012. Expression of expansin gene, MiExpA1, and activity of galactosidase and polygalacturonase in mango fruit as affected by oxalic acid during storage at room temperature. Food Chem 132: 849-854. DOI: 10.1016/j.foodchem.2011.11.0 49.

How to Cite
Utami, M., Wijaya, C. H., Efendi, D., & Adawiyah, D. R. (2020). KARAKTERISTIK FISIKOKIMIA DAN PROFIL SENSORI MANGGA GEDONG PADA DUA TINGKAT KEMATANGAN. Jurnal Teknologi Dan Industri Pangan, 31(2), 113-126. https://doi.org/10.6066/jtip.2020.31.2.113