Main Article Content

Abstract

The objectives of this study were to determine a suitable thin layer drying model to describe the drying kinetics of Guazuma ulmifolia leaves and determine the mass transfer parameters of Guazuma ulmifolia leaves. The drying of Guazuma ulmifolia leaves was conducted in a laboratory scale dryer with various temperature (40oC, 50oC, and 60oC) and relative humidity (30%, 40%, 50% and 60%). Five drying models, namely, Newton, Henderson and Pabis, Page, Midilli-Kucuk, and Verma et al. were fitted to the drying data. The drying curve of guazuma leaves did not show a constant drying period during the drying period. The models suitability were compared base on coefficient of determination (R2), root square mean errors (RSME), and reduced mean square of deviation (X2). It was found that, among the models evaluated, the Midilli and Kucuk model is the best to describe the drying kinetics of Guazuma ulmifolia leaves. The effective moisture diffusivity was found to be in the range of 10-13 – 10-12 m2/s and the convective mass transfer coefficient was in the range of 10-9 – 10-10 m/s. The activation energy value was found to be 89.21 kJ/mol.

Keywords

Drying model Drying rate Guazuma ulmifolia leaves Thin layer drying

Article Details

References

  1. Aghbashlo, M., H. Kianmehr, H. Samimi-Akhijahani. 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management 49(10):2865-2871. doi:10.1016/j.enconman.2008.03.009
  2. Akpinar, K., Y. Bicer, F. Cetinkaya. 2006. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering 75(3):308-315. doi:10.1016/j.jfoodeng.2005.04.018
  3. Alara, O.R., N.H. Abdurahman, O.A. Olalere. 2019. Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. Journal of the Saudi Society of Agricultural Sciences 18(3):309-315. doi:10.1016/j.jssas.2017.09.003
  4. Ali, M.A., Y.A. Yusof, N.L. Chin, M.N. Ibrahim, S.M.A. Basra. 2014. Drying Kinetics and Colour Analysis of Moringa Oleifera Leaves. Agriculture and Agricultural Science Procedia 2:394-400. doi:10.1016/j.aaspro.2014.11.055
  5. Ashtiani, M., S. Seyed-Hassan, G. Alireza, M. Reza. 2017. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Information Processing in Agriculture 4(2):128-139. doi:10.1016/j.inpa.2017.03.001
  6. Ayadi, M., S.B. Mabrouk, I. Zouari, A. Bellagi. 2014. Kinetic study of the convective drying of spearmint. Journal of the Saudi Society of Agricultural Sciences 13(1):1-7. doi:10.1016/j.jssas.2013.04.004
  7. Coradi, P., E.D.C. Melo, R. da Rocha. 2014. Mathematical modeling of the drying kinetics of the leaves of lemon grass (Cymbopogon citratus Stapf) and its effects on quality. IDESIA 32(4):43-56.
  8. Darvishi, H., J. Khodaie, M. Azadbakht. 2015. The parameters of mass transfer of convective drying in sliced melon. Philipp Agric. Sci 98:60-72.
  9. Dincer, I., M. Hussain. 2004. Development of a new Biot number and lag factor correlation for drying applications. International Journal of Heat and Mass Transfer 47(4):653-658. doi:10.1016/j.ijheatmasstransfer.2003.08.006
  10. Dincer, I., M. Hussain, B. Yilbas, A. Sahin. 2002. Development of a new drying correlation for practical applications. International Journal of energy research 26(3):245-251.
  11. Dincer, I., C. Zamfirescu. 2016. Drying phenomena: theory and applications. John Wiley & Sons.
  12. Doymaz, I. 2011. Drying of thyme (Thymus vulgaris L.) and selection of a suitable thin‐layer drying model. Journal of Food Processing and Preservation 35(4):458-465.
  13. Doymaz, I. 2006. Thin-layer drying behaviour of mint leaves. Journal of Food Engineering 74(3):370-375. doi:10.1016/j.jfoodeng.2005.03.009
  14. Doymaz, I., N.Tugrul, M. Pala. 2006. Drying characteristics of dill and parsley leaves. Journal of Food Engineering 77(3):559-565.
  15. Erbay, Z., F. Icier. 2010. Thin‐layer drying behaviors of olive leaves (Olea europaea L.). Journal of Food Process Engineering 33(2):287-308.
  16. Evin, D. 2012. Thin layer drying kinetics of Gundelia tournefortii L. Food and Bioproducts Processing 90(2):323-332. doi:10.1016/j.fbp.2011.07.002
  17. Giner, S., R. Irigoyen, S. Cicuttin, C. Fiorentini. 2010. The variable nature of Biot numbers in food drying. Journal of Food Engineering 101(2):214-222. doi:10.1016/j.jfoodeng.2010.07.005
  18. Jurendic, T., B.Tripalo. 2011. Biot number-lag factor (Bi-G) correlation for tunnel drying of baby food. African Journal of Biotechnology 10(59):12676-12683.
  19. Kadam, D., R. Goyal, M. Gupta. 2011. Mathematical modeling of convective thin layer drying of basil leaves. Journal of Medicinal Plants Research 5(19):4721-4730.
  20. Kalaivani, K., V. Chitradevi. 2013. Mathematical modeling on drying of Syzygium Cumini (L.). International Journal of Agricultural and Biological Engineering 6(4):96-103.
  21. Kaya, A., O. Aydın. 2009. An experimental study on drying kinetics of some herbal leaves. Energy Conversion and Management 50(1):118-124. doi:10.1016/j.enconman.2008.08.024.
  22. Kucuk, H., A. Midilli, A. Kilic, I. Dincer. 2014. A review on thin-layer drying-curve equations. Drying Technology 32(7):757-773.
  23. Kumar, C., M. Karim, M. Joardder. 2014. Intermittent drying of food products: A critical review. Journal of Food Engineering 121:48-57. doi:10.1016/j.jfoodeng.2013.08.014
  24. Manalu, L.P. 2011. Optimasi pengeringan lapisan tipis simplisia temu putih dan temu lawak berdasarkan analisis eksergi. (Disertasi). Sekolah Pascasarjana, IPB. Bogor.
  25. McMinn, W.A.M., M.A.M. Khraisheh, T.R.A. Magee. 2003. Modelling the mass transfer during convective, microwave and combined microwave-convective drying of solid slabs and cylinders. Food Research International 36(9):977-983. doi:10.1016/S0963-9969(03)00118-2.
  26. Mrkic, V., M. Ukrainczyk, B. Tripalo. 2007. Applicability of moisture transfer Bi–Di correlation for convective drying of broccoli. Journal of Food Engineering 79(2):640-646. doi:10.1016/j.jfoodeng.2006.01.078.
  27. Ozbek, B., G. Dadali. 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering 83(4):541-549. doi:10.1016/j.jfoodeng.2007.04.004
  28. Panchariya, P., D. Popovic, A. Sharma. 2002. Thin-layer modelling of black tea drying process. Journal of Food Engineering 52(4):349-357. doi:10.1016/S0260-8774(01)00126-1
  29. Pardeshi, I.L., S. Arora, P.A. Borker. 2009. Thin-Layer Drying of Green Peas and Selection of a Suitable Thin-Layer Drying Model. Drying Technology 27(2):288-295. doi:10.1080/07373930802606451
  30. Park, K., Z. Vohnikova, F. Brod. 2002. Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Journal of Food Engineering 51(3):193-199. doi:10.1016/S0260-8774(01)00055-3.
  31. Patel, J., A.D. Dhamat, A.A. Patel, N. Patel. 2012. Ethnomedicinal, phytochemical and preclinical profile of guazuma ulmifolia lam. Pharma Science Monitor. p. 66 - 78.
  32. Pin, K.Y., T.G. Chuah, A.A. Rashih, C.L. Law, M.A. Rasadah, T.S.Y. Choong. 2009. Drying of Betel Leaves (Piper betle L.): Quality and Drying Kinetics. Drying Technology 27(1):149-155. doi:10.1080/07373930802566077.
  33. Potisate, Y., S. Phoungchandang, W.L. Kerr. 2014. The Effects of Predrying Treatments and Different Drying Methods on Phytochemical Compound Retention and Drying Characteristics of Moringa Leaves (Moringa oleifera Lam.). Drying Technology 32(16):1970-1985. doi:10.1080/07373937.2014.926912
  34. Premi, M., H. Sharma, A. Upadhyay. 2012. Effect of air velocity and temperature on the drying kinetics of drumstick leaves (Moringa oleifera). International journal of food engineering 8(4).
  35. Sharma, S.K., S.J. Mulvaney, S.S.H. Rizvi. 2000. Food Process Engineering. New York: Jhon Wiley & Sons, Inc.
  36. Shi, Q., Y. Zheng, Y. Zhao. 2013. Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Conversion and Management 71:208-216. doi:10.1016/j.enconman.2013.03.032
  37. Torki-Harchegani, M., D. Ghanbarian, P. Ghasemi, M. Sadeghi. 2016a. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews 58:407-418. doi:10.1016/j.rser.2015.12.078
  38. Torki-Harchegani, M., M. Ghasemi-Varnamkhasti, D. Ghanbarian, M. Sadeghi, M. Tohidi. 2016b. Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat and Mass Transfer 52(2):281-289.
  39. Tulliza, I.S., A.H. Tambunan, U. Ahmad. 2010. Pengaruh Penyusutan Temu Putih (Curcuma zedoaria (Berg) Roscoe) Terhadap Karakteristik Pengeringan Lapisan Tipis. Jurnal Keteknikan Pertanian 24(2).
  40. Zogzas, N.P., Z.B. Maroulis, D. Marinos-Kouris. 1996. Moisture Diffusivity Data Compilation in Foodstuffs. Drying Technology 14(10):2225-2253. doi:10.1080/07373939608917205