Main Article Content

Abstract

Abstract
Currently, Kuncir River is a source of irrigation water in the southern of Nganjuk District. The potential of
Kuncir River was assessed by measuring the dependable flow as an indicator of water supply for irrigated
areas. The objective of this study was to estimate the river discharge and its dependable flow for irrigation
from Kuncir River in Nganjuk District. River discharge data was collected from Kuncir River, rainfall data was
collected from Nganjuk District, East Java and climate data was collected from climatology station of Badan
Meteorologi Klimatologi dan Geofisika (BMKG) Sawahan, Nganjuk. There were two major steps on this
study which were model development and model simulation using SWAT after calibration and validation.
Model simulation showed NS value of 0.67 with mean daily flow of 7.15 m3 s-1. Based on land use change
scenario, the conversion of 50% on forest and 50% on range-grasses into agriculture land could increase
3.1% and 2.5% of average river discharge, respectively.

Abstrak
Sungai Kuncir merupakan sumber air irigasi di bagian selatan Kabupaten Nganjuk. Potensi Sungai
Kuncir dapat dikaji melalui perhitungan debit andalan untuk dijadikan indikator jumlah pemenuhan air di
daerah irigasi. Penelitian ini bertujuan menduga debit air sungai dan menghitung besar debit andalan
untuk irigasi pada Sungai Kuncir, Kabupaten Nganjuk. Data debit sungai dikumpulkan langsung di Sungai
Kuncir, data hujan dikumpulkan dari Dinas PU dan Pengairan Kabupaten Nganjuk, Jawa Timur, dan data
iklim dikumpulkan dari stasiun kimatologi Badan Meteorologi Klimatologi dan Geofisika (BMKG) Sawahan,
Nganjuk. Penelitian dilakukan melalui dua tahap, yaitu proses pembangunan model dan proses simulasi
dengan SWAT setelah melalui proses kalibrasi dan validasi. Simulasi model memiliki nilai NS sebesar 0.67
dan debit rata-rata harian sebesar 7.15 m3 s-1. Skenario perubahan lahan menggambarkan konversi 50%
lahan hutan dan 50% semak belukar menjadi lahan pertanian berpotensi meningkatkan nilai debit rata-rata
Sungai Kuncir masing-masing sebesar 3.1% dan 2.5%.

Keywords

Kuncir River dependable flow SWAT

Article Details

References

  1. Ahl RS, Woods SW, Zuurig HR. 2008. Hydrologic
  2. calibration and validation of SWAT in a snowdominated
  3. rocky mountain watershed. Journal
  4. of the American Water Resources Association.
  5. 44(6):1411.
  6. Arnold JG, Srinivasan R, Muttiah RS, Williams
  7. JR. 1998. Large Area Hydrologic Model and
  8. Assessment Part I: Model Development. Journal
  9. of the American Water Resources Association.
  10. 34(1):73-89.
  11. Ferijal T. 2012. Prediksi hasil limpasan permukaan
  12. dan laju erosi dari subDAS Krueng Jreu
  13. menggunakan model SWAT. Jurnal Agrisa.
  14. 16(1):29-38.
  15. Fiseha BM, Setegn SG, Melesse AM, Volpi E, Fiori
  16. A. 2012. Hydrological analysis of the upper Tiber
  17. River basin, Central Italy: a watershed modelling
  18. approach. Hydrological Processes. doi: 10.1002/
  19. hyp.9234.
  20. Indarto A, Juwono PT, Rispiningtati. 2012. Kajian
  21. potensi Sungai Srinjing untuk Pembangkit
  22. Listrik Tenaga Mikrohidro (PLTMH) Brumbung
  23. di Kabupaten Kediri. Jurnal Teknik Pengairan.
  24. 3(2):174-184.
  25. Indra Z. 2012. Analisis debit Sungai Munte dengan
  26. metode Mock dan metode NRECA untuk
  27. kebutuhan Pembangkit Listrik Tenaga Air. Jurnal
  28. Sipil Statik. 1(1):34-38.
  29. Liyantono, Kato T, Kuroda H, Yoshida K. 2013. GIS
  30. analysis of conjunctive water resource use in
  31. Nganjuk District, East Java, Indonesia. Barker
  32. R (Editor). Paddy and Water Environment. ISSN
  33. 1611-2490. doi: 10.1007/s10333-011-0304-0.
  34. Muchtar A, Abdullah N. 2007. Analisis faktor-faktor
  35. yang mempengaruh debit Sungai Mamasa.
  36. Jurnal Hutan dan Masyarakat. 2(1):174-187.
  37. Mohamoud YM. 2008. Prediction of daily flow
  38. duration curves and streamflow for ungauged
  39. catchments using regional flow duration curves.
  40. Journal Hydrological Sciences. 53(4):706-724.
  41. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL,
  42. Harmel RD, Veith TL. 2007. Model evaluation
  43. guidelines for systematic quantification of
  44. accuracy in watershed simulations. American
  45. Society of Agricultural and Biological Engineers.
  46. 50(3):885-900.
  47. [NJIT] New Jersey Institute of Technology. 2010.
  48. SWAT modelling analysis for the Neshanic River
  49. Watershed [Internet]. [downloaded 2013 Dec 1].
  50. Available at: http://ims.njit.edu/neshanic/docs/
  51. plan/AppFSWATModelingReport.pdf.
  52. Pereira MVF, Oliveira GC, Costa CCG, Kelman
  53. J. 1984. Stochastic Streamflow Models for
  54. Hydroelectric Systems. Water Resources
  55. Research. 20: 379-390.
  56. Santhi CA, Arnold JG, Williams JR, Dugas WA,
  57. Srinivasan R, Houck LM. 2001. Validation of
  58. SWAT model on a larger river basin with point
  59. and non point sources. Journal of the American
  60. Water Resources Association. 37(5):1169-1188.
  61. Sauquet E, and Catalogne C. 2011. Comparison of
  62. catchment grouping methods for flow duration
  63. curve estimation at ungauged sites in France.
  64. Hydrology and Earth System Sciences. 15:2421-
  65. 2435. doi:10.5194/hess-15-2421-2011.
  66. Srinivasan R, Ramanarayanan TS, Arnold JG,
  67. Bednarz ST. 1998. Large Area Hydrologic
  68. Model and Assessment Part II: Model Aplication.
  69. Journal of the American Water Resources
  70. Association. 34(1):91-101.
  71. Wei W, Chen LD, Fu BJ, Huang ZL, Wu DP, Gui
  72. LD. 2007. The effect of land uses and rainfall
  73. regimes on runoff and soil erosion in the semiarid
  74. loess hilly area, China. Journal of Hydrology.
  75. 335: 247–25.