Application of MAPDAS Model for Micro-Watersheds Hydrological Characteristics Simulation Dominated by Oil Palm Plantation

Aplikasi Model MapDAS untuk Simulasi Karakteristik Hidrologi DAS Mikro yang Didominasi Perkebunan Sawit

  • Faqihna Pidin Program Studi Ilmu Pengelolaan DAS Sekolah Pascasarjana IPB, Kampus IPB Darmaga 16680
  • Suria Darma Tarigan Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor, Jl. Meranti Kampus IPB Dramaga, Bogor 16680
  • Budi Kartiwa Balai Penelitian Agroklimatologi dan Hidrologi, Balitbang Pertanian Kemetan, Jl. Tentara Pelajar Cimanggu Bogor 16111
Keywords: Effective rainfall determination, MAPDAS Model, runoff coefficient (Kr)

Abstract

Land use change in the plantation expansion can potentially cause soil degradation leading to drought in the dry season and flooding in the wet season. Hydrological model is important to simulate impact of land use change in the plantation on the discharge fluctuation. This study used MAPDAS Model for simulation purpose. MAPDAS Model uses 4 (four) main simulation input parameters, which are runoff coefficient (Kr), lag time, hydrographic network flow rate, and slope flow rate. The objective of the study are 1) to examine the accuracy of the model in 3 effective-rainfall determination method; 2) to study the hydrology characteristics of micro-watershed dominated by oil palm plantation using MAPDAS Model with 3 effective rainfall determination scenarios. The result showed that the use of MAPDAS Model with rainfall input based on Kr, infiltration index (F), and SCS-CN method gave value of runoff coefficient ranged from 12 to 70%. The MAPDAS Model is able to simulate hydrological characteristics with good result, shown by the CE value which is more than 0.7. catagorized as high to very high accuracy.

Downloads

Download data is not yet available.

References

Afriyanti, D., Kroeze, C. and Saad, A., 2016. Indonesia palm oil production without deforestation and peat conversion by 2050, Sci. Total. Environ., 557-558 (2016) 562–570,

Arsyad, S. 2010. Konservasi Tanah dan Air. Institut Pertanian Bogor Press. Bogor

Banuwa, I.S., N. Sinukaban, S.D. Tarigan dan D. Darusman. 2008. Evaluasi kemampuan lahan DAS Sekampung Hulu. Jurnal Tanah tropika, 13(2): 145-153

Carrasco, L.R., C. Larossa, E.J. Milner-Gulland and D.P. Edwards. 2014. A double-edged sword for tropical forests. Science 346, 38 DOI: 10.1126 /science.1256685.

Chow, V.T., D.R. Maidment and L.W. Mays. 1988. Applied Hydrology. McGraw-Hill. International Edition. 572 p.

Ditjenbun, 2017, Indonesian plantation statistics: Oil palm (Kelapa Sawit) 2016-2018, Ministry for Agriculture Republic of Indonesia, Jakarta.

Gracia, A., A. Sainz, J.A. Revilla and C. Alvarez. 2008. Surface water resource assessment in scarcely gauged basins in the north of spain. J. Hdrol 356:312-326.

Jain, S.K., H. Chowdhary, S.M. Seth and R.K. Nema. 1997. Flood estimation using a GIUH based on a conceptual rainfall-runoff model and GIS. ITC Journal, 1997-1: 20-25.

Junaidi, E. dan S.D. Tarigan. 2011. Pengaruh hutan dalam pengaturan tata air dan proses sedimentasi Daerah Aliran Sungai (DAS): Studi Kasus di DAS Cisadane. Jurnal Penelitian Hutan dan Konservasi Alam, 8(2): 155-176

Kartiwa, B. 2004. Modelisation du Fonctionnement Hydrologique des Bassins Versants. [Disertasi]. (FR): Universite D’Angers.

Mizwar, Z. 2012. Aplikasi Model Hidrologi Dalam Penentuan Sistem Panen Hujan Dan Aliran Permukaan Daerah Tangkapan Air Singkarak. [Disertasi]. Institut Pertanian Bogor. Bogor

Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models Part 1A: discussion of principles. J. Hydrol. 10: 282–290.

Neitsch, S.L., J.G. Arnold, J.R. Kiniry, R. Srinivasan, J.R. Williams and E.B. Haney. 2011. Soil and Water Assessment Tool: Input/Output File Documentation, Version 2009. Temple, Texas (US): Texas Water Resources Institute-Texas A&M University.

[NRCS] Natural Resources Conservation Service. 2009. Hydrologic Soil Groups dalam Hydrology National Engineering Handbook Part 630. USDA. Amerika Serikat.

Sayer, J., J. Ghazoul, P. Nelson and A.K. Boedhihartono. 2012. Oil palm expansion transforms tropical landscapes and livelihoods. Global Food Security 1: 114-119.

Schwab, G.O., R.K. Frevert, T.W. Edmister and K.K. Barnes. 1981. Soil and Water Conservetion Engineering. Thrid Edition. The Ferguson Foundation Agriculutral Engineering Series. United States of America

Singh, P.K., P.K. Bhunya, S.K. Mishra and U.C. Chaube. 2008. A sediment graph model based on SCS_CN. J. Hydrol., 349 (1): 244-255.

Tarigan, S.D., K. Wiegand, Sunarti and B. Slamet. 2018. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia. Hydrology and Eaerth system Sciences 22: 581-594.

Tarigan, S.D., 2016. Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed IOP Conference Series: Earth and Environmental Science, Vol. 31(1): 012030

Tarigan, S.D., Sunarti and S. Widyaliza. 2015. Expansion of oil palm plantations and forest cover changes in Bungo and Merangin Distric, Jambi Province, Indonesia. Elsevier Procedia Environmental Sciences 5(6):199-205.

Tarigan, S.D., K. Wiegand, C. Dislich, B. Slamet, J. Heinonen and K. Meyer. 2016. Mitigation options for improving the ecosystem function of water flow regulation in a watershed. Sustainability of Water Quality and Ecology, 8: 4-13.

Published
2019-04-01
How to Cite
PidinF., TariganS. D., & KartiwaB. (2019). Application of MAPDAS Model for Micro-Watersheds Hydrological Characteristics Simulation Dominated by Oil Palm Plantation: Aplikasi Model MapDAS untuk Simulasi Karakteristik Hidrologi DAS Mikro yang Didominasi Perkebunan Sawit. Jurnal Ilmu Tanah Dan Lingkungan, 21(1), 30-36. https://doi.org/10.29244/jitl.21.1.30-36