Pemanfaatan Teknologi Tepat Guna Identifikasi Tumbuhan Obat Berbasis Citra

Yeni Herdiyeni, Julio Adisantoso, Ellyn K Damayanti, Ervizal AM Zuhud, Elvira Nurfadhila, Kristina Paskianti

Abstract


Indonesia is a mega biodiversity country including many kind medicinal plants. It is not easy to identify the various kinds of the medicinal plants especially for common people. Therefore, we need a computer-based automatic system as a tool to identify these various types of the medicinal plants. Developing of computer-based automatic system for medicinal plant identification has been done based on leaf image. There are 30 species of medicinal plants used in this study. There are 3 features for identification, i.e. morphology, texture, and shape. To improve the accuracy of identification we applied probabilistic neural network to classify the species of medicinal plant. The experiment results showed that the accuracy of identification increase to 74.67%. Developing of search engine has been done as well. We used 32 species of medicinal plant. The number of document was 132 documents. The document consists of name, family, description, diseases, and chemical substances. To improve the accuracy of searching, we applied KNN Fuzzy to classify document into 2 categories, i.e., family and diseases. The experiment results showed that the accuracy of average of precision is 96% for only word of length query and 89% for two words of length query. The system is very beneficial for people in society because it can be used to identify medicinal plants easily and the relevant communitis become independent in maintaining family health and giving opportunities as well as income of the people. Hence, the system is promising for leaf identification and supporting plant biodiversity in Indonesia.


Keywords


leaf identification; leaf morphology; leaf shape; medicinal plants; probabilistic neural network; product decision rule

Full Text:

PDF

References


Annisa. 2009. Ekstraksi ciri morfologi dan tekstur untuk temu kembali citra daun. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Kulsum L. 2010. Identifikasi tanaman hias secara otomatis menggunakan metode local binary patterns descriptor dan probabilistic neural network. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Nurafifah. 2010. Penggabungan ciri morfologi, tekstur, dan bentuk untuk identifikasi daun menggunakan probabilistic neural network. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Rahmadhani M. 2009. Esktraksi fitur bentuk dan venasi citra daun dengan pemodelan Fourier dan B-spline. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Rostiana O, Abdullah A, Wahid P. 1992. Penelitian Plasma Nutfah Tumbuhan Obat. Prosiding Forum Komunikasi Ilmiah Hasil Penelitaian Plasma Nutfah dan Budi daya Tumbuhan Obat. Bogor (ID): Balitbang Pertanian.

Tukiman. 2004. Pemanfaatan Tumbuhan Obat Keluarga (TOGA) untuk Kesehatan Keluarga. Pendidikan Kesehatan dan Ilmu Perilaku Fakultas Kesehatan Masyarakat Universitas Sumatera Utara.http://library.usu.ac.id

Zuhud EAM, Hikmat A, Siswoyo, Sandra E, Damayanti EK. 2010. Pengembangan Kampung Konservasi Tumbuhan Obat Keluarga (TOGA) sebagai Model Ketahanan Obat Masyarakat Melalui Rekayasa Tri-Stimulus Amar (Alamiah, Manfaat Rela) Pro-Konservasi dan Menjalin Kemitraan.




View JIPI Stats

 

   Creative Commons License

This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License.

Editorial Office: Institute for Research and Community Services (LPPM), Andi Hakim Nasoetion Building, 5th Floor, Jl. Raya Darmaga, IPB Darmaga Campus, Bogor, West Java, Indonesia 16680, Telp/Fax: +62251-8622323, email: jipi-lppm@apps.ipb.ac.id; jipi-lppm@ipb.ac.id